ACL RD-TEC 1.0 Summarization of C04-1081

Paper Title:
CHINESE SEGMENTATION AND NEW WORD DETECTION USING CONDITIONAL RANDOM FIELDS

Authors: Fuchun Peng and Fangfang Feng and Andrew McCallum

Other assigned terms:

  • approach
  • benchmark
  • case
  • character sequence
  • characters
  • chinese characters
  • chinese sentence
  • chinese word
  • chinese words
  • conditional probability
  • ctb dataset
  • data sets
  • data sparseness
  • dictionary
  • distribution
  • domain knowledge
  • entropy
  • entropy models
  • fact
  • feature
  • gaussian prior
  • generative models
  • graph structure
  • heuristic
  • implementation
  • input text
  • intelligence
  • knowledge
  • labeling
  • language models
  • language processing tasks
  • lexical knowledge
  • lexicon
  • likelihood
  • likelihood function
  • log-likelihood
  • log-linear models
  • markov models
  • maximum entropy models
  • measure
  • method
  • model structure
  • modeling problem
  • n-best list
  • n-gram
  • named entity
  • names
  • open test
  • part-of-speech
  • precision
  • prior distribution
  • probability
  • procedure
  • process
  • processing tasks
  • proper names
  • segmentation accuracy
  • segmentation problem
  • segments
  • sentence
  • sentences
  • sequence modeling problem
  • tags
  • terms
  • test data
  • test set
  • text
  • training
  • training data
  • training set
  • training time
  • vocabulary
  • word
  • word boundaries
  • word category
  • word category information
  • word segmentation accuracy
  • words

Extracted Section Types:


This page last edited on 10 May 2017.

*** ***