ACL RD-TEC 1.0 Summarization of W03-0417

Paper Title:
TRAINING A NAIVE BAYES CLASSIFIER VIA THE EM ALGORITHM WITH A CLASS DISTRIBUTION CONSTRAINT

Authors: Yoshimasa Tsuruoka and Jun'ichi Tsujii

Other assigned terms:

  • annotation
  • approach
  • baseline performance
  • bayes model
  • binary feature
  • case
  • class distribution
  • class probability
  • classification error
  • classification performance
  • conditional independence
  • context features
  • convergence
  • corpora
  • data sets
  • discourse
  • distribution
  • entropy
  • entropy models
  • estimation
  • experimental results
  • fact
  • feature
  • feature vector
  • grammars
  • implementation
  • labeled training data
  • language processing tasks
  • large corpus
  • likelihood
  • local context
  • maximum entropy models
  • meaning
  • method
  • naive bayes model
  • natural language
  • natural language processing tasks
  • nlp applications
  • polysemous word
  • polysemous words
  • precision
  • probability
  • probability model
  • process
  • processing tasks
  • semantic
  • sense disambiguation problem
  • sentence
  • sigmoid function
  • statistics
  • support vector
  • target word
  • technique
  • test set
  • text
  • training
  • training data
  • transformation
  • unlabeled examples
  • word
  • word corpus
  • word sense
  • words

Extracted Section Types:


This page last edited on 10 May 2017.

*** ***