ACL RD-TEC 1.0 Summarization of P03-1038

Paper Title:
SELF-ORGANIZING MARKOV MODELS AND THEIR APPLICATION TO PART-OF-SPEECH TAGGING

Authors: Jin-Dong Kim and Hae-Chang Rim and Jun'ichi Tsujii

Other assigned terms:

  • annotated corpora
  • annotated corpus
  • approach
  • brown corpus
  • case
  • classification tasks
  • context features
  • context model
  • contextual feature
  • contextual features
  • contextual information
  • corpora
  • distribution
  • entropy
  • entropy models
  • estimation
  • fact
  • feature
  • good-turing estimation
  • implementation
  • information gain
  • interpolation
  • interpretation
  • language model
  • language models
  • leaf
  • lexical context
  • lexical information
  • likelihood
  • likelihood probability
  • lopez distance
  • mapping
  • markov models
  • maximum entropy models
  • measures
  • method
  • model size
  • nlp tasks
  • noun phrases
  • nouns
  • part-of-speech
  • part-of-speech tagging task
  • penn treebank
  • penn treebank ii
  • preposition
  • prepositions
  • probability
  • process
  • root node
  • second order context
  • sentence
  • sparse data
  • sparse data problem
  • statistics
  • subtree
  • suffix
  • support vector
  • svms
  • symbol
  • syntactic class
  • tag sequence
  • tagging model
  • tagging problem
  • tagging task
  • tags
  • term
  • terms
  • test corpus
  • test phase
  • training
  • training corpus
  • translation model
  • tree
  • tree representation
  • treebank
  • trees
  • word
  • word features
  • word sequence
  • word sequences
  • words

Extracted Section Types:


This page last edited on 10 May 2017.

*** ***