ACL RD-TEC 1.0 Summarization of P97-1006

Paper Title:
DOCUMENT CLASSIFICATION USING A FINITE MIXTURE MODEL

Authors: Hang Li and Kenji Yamanishi

Other assigned terms:

  • approach
  • case
  • cluster
  • clusters
  • data set
  • data sets
  • data sparseness
  • data sparseness problem
  • distribution
  • document
  • estimation
  • experimental results
  • finite mixture model
  • heuristics
  • histogram
  • hypothesis
  • implementation
  • intractability
  • knowledge
  • language processing tasks
  • latent semantic
  • likelihood
  • likelihood ratio
  • linear combination
  • linguistic
  • markov chain
  • measure
  • method
  • mixture models
  • natural language
  • natural language processing tasks
  • notational simplicity
  • precision
  • prepositions
  • probabilistic approach
  • probabilities
  • probability
  • probability distribution
  • probability model
  • process
  • processing tasks
  • relative frequency
  • reuters corpus
  • reuters data set
  • semantic
  • sparseness problem
  • susanne corpus
  • target word
  • technique
  • term
  • terms
  • test data
  • text
  • topics
  • training
  • training data
  • vocabulary
  • word
  • word frequencies
  • word sense
  • words

Extracted Section Types:


This page last edited on 10 May 2017.

*** ***