
Writing Structured Programs
Behrang QasemiZadeh

Text Mining Project --- Behrang QasemiZadeh ©

Objectives

•With a focus on NLP applications, we discuss:
• Writing well-structured and readable codes.
• Reviewing fundamental building blocks of Python

programming:
• Functions;
• Control structures such as loops;
• Assignments;
• Programming constructs.

• Gaining knowledge about shortcomings of Python.

Text Mining Project --- Behrang QasemiZadeh ©

Assignment

• An assignment statement sets the value stored by a variable name.
• The assignment operator is the equal sign “=”.
• The name of the variable is always on the left side of the equals sign, and the

value of the variable on the right side of the equals sign.

>>> foo = 'Monty'

Text Mining Project --- Behrang QasemiZadeh ©

Assignment

• An assignment statement sets the value stored by a variable name.
• The assignment operator is the equal sign “=”.
• The name of the variable is always on the left side of the equals sign, and the

value of the variable on the right side of the equals sign.

• A variable, object fields, and entries in collections, etc. are just references.
• Values are stored else where and referenced by variables.
• Multiple references can refer to the same value.
• In simplest terms, a variable is just a box that you can put stuff in.

>>> foo = 'Monty'

Text Mining Project --- Behrang QasemiZadeh ©

Assignment Quiz: basic data type

What is the output for bar?!

>>> foo = 'Monty'
>>> bar = foo
>>> foo = 'Python'
>>> bar

Text Mining Project --- Behrang QasemiZadeh ©

Assignment Quiz: basic data type

What is the output for bar?!

>>> foo = 'Monty'
>>> bar = foo
>>> foo = 'Python'
>>> bar
'Monty'

WHY?!

Text Mining Project --- Behrang QasemiZadeh ©

Assignment Quiz: basic data type

What is the output for bar?!

>>> foo = 'Monty'
>>> bar = foo
>>> foo = 'Python'
>>> bar
'Monty'

bar is ‘Monty’ because
we said that is should be
whatever foo is at the

time of assignment.

Text Mining Project --- Behrang QasemiZadeh ©

Assignment Quiz: basic data type

What is the output for bar?!

>>> foo = 'Monty'
>>> bar = foo
>>> foo = 'Python'
>>> bar
'Monty'

bar is ‘Monty’ because
we said that is should be
whatever foo is at the

time of assignment.
For basic data
types we COPY
the value when
assigning valuesText Mining Project --- Behrang QasemiZadeh ©

Assignment: lists and dictionaries

• The “value” of a structured object such as a list or a dictionary is
actually just a reference to the object.

Text Mining Project --- Behrang QasemiZadeh ©

Assignment: lists and dictionaries

• The “value” of a structured object such as a list or a dictionary is
actually just a reference to the object.

>>> foo = ['Monty', 'Python']
>>> bar = foo
>>> foo[1] = 'Bodkin'
>>> bar

What is the
output?

Text Mining Project --- Behrang QasemiZadeh ©

Assignment: lists and dictionaries

• The “value” of a structured object such as a list or a dictionary is
actually just a reference to the object.

>>> foo = ['Monty', 'Python']
>>> bar = foo
>>> foo[1] = 'Bodkin'
>>> bar
['Monty', 'Bodkin']

Text Mining Project --- Behrang QasemiZadeh ©

Assignment: lists and dictionaries

• The “value” of a structured object such as a list or a dictionary is
actually just a reference to the object.

>>> foo = ['Monty', 'Python']
>>> bar = foo
>>> foo[1] = 'Bodkin'
>>> bar
['Monty', 'Bodkin']

Why?

Text Mining Project --- Behrang QasemiZadeh ©

Assignment: lists and dictionaries

• The “value” of a structured object such as a list or a dictionary is
actually just a reference to the object.

>>> foo = ['Monty', 'Python']
>>> bar = foo
>>> foo[1] = 'Bodkin'
>>> bar
['Monty', 'Bodkin']

bbar = foo
assigns the reference

of foo to the new
variable bar

Text Mining Project --- Behrang QasemiZadeh ©

Assignment: lists and dictionaries

Text Mining Project --- Behrang QasemiZadeh ©

Assignment: lists and dictionaries

• Read more on data types:
http://en.wikibooks.org/wiki/Python_Programming/Data_Types

Text Mining Project --- Behrang QasemiZadeh ©

http://en.wikibooks.org/wiki/Python_Programming/Data_Types

Quiz

>>> empty = []
>>> nested = [empty, empty, empty]

>>> nested[1].append('Python')
>>> nested

>>> nested = [[]] * 3
>>> nested[1].append('Python')
>>> nested[1] = ['Monty']
>>> nested

• What is the output?

Text Mining Project --- Behrang QasemiZadeh ©

Quiz

>>> empty = []
>>> nested = [empty, empty, empty]

>>> nested[1].append('Python')
>>> nested

>>> nested = [[]] * 3
>>> nested[1].append('Python')
>>> nested[1] = ['Monty']
>>> nested

• What is the output?

[['Python'], ['Monty'], ['Python']][['Python'], ['Python'], ['Python']]

Text Mining Project --- Behrang QasemiZadeh ©

Quiz

>>> empty = []
>>> nested = [empty, empty, empty]

>>> nested[1].append('Python')
>>> nested

>>> nested = [[]] * 3
>>> nested[1].append('Python')
>>> nested[1] = ['Monty']
>>> nested

• What is the output?

[['Python'], ['Monty'], ['Python']][['Python'], ['Python'], ['Python']]

Text Mining Project --- Behrang QasemiZadeh ©

Quiz

>>> empty = []
>>> nested = [empty, empty, empty]

>>> nested[1].append('Python')
>>> nested

>>> nested = [[]] * 3
>>> nested[1].append('Python')
>>> nested[1] = ['Monty']
>>> nested

• What is the output?

[['Python'], ['Monty'], ['Python']][['Python'], ['Python'], ['Python']]
id()function Return the
identity of an object. Try
function id(), e.g. type
in id(nested[1])Text Mining Project --- Behrang QasemiZadeh ©

Assignment

• Assignment statements in Python do not copy objects, they create
bindings between a target and an object.

• To copy items from a list called foo to a new list called bar you can
use bar = foo[:]

• Compare bar = foo[:] and bar = foo
• What if foo and bar contains lists?

• Shallow and deep copy operations can be performed using copy
• A shallow copy constructs a new compound object and then (to the extent

possible) inserts references into it to the objects found in the original.
• A deep copy constructs a new compound object and then, recursively, inserts

copies into it of the objects found in the original.

Text Mining Project --- Behrang QasemiZadeh ©

Equality and identity

• It is sometimes necessary to compare two values for equality.
• The is operator tests for object identity (remember id()?!):

• in the previous slide, what is the output of nested[0] is nested[1]?

• Identity (is) implies equality (==) but the reverse is not true:
• Two distinct objects can have the same value.

• You use == when comparing values and is when comparing
identities.

Text Mining Project --- Behrang QasemiZadeh ©

Conditionals

• In the condition part of an if statement, a non-empty string or list is
evaluated as true, while an empty string or list evaluates as false.

>>> mixed = ['cat', '', ['dog'], []]
>>> for element in mixed:

if element:
print element

cat
['dog']
>>>

Text Mining Project --- Behrang QasemiZadeh ©

Conditionals

• Be informed of the difference of elif and a number of consecutive
if statements:

• The satisfaction of if statements, terminates the rest of comparisons in the
conditional construct.

>>> animals = ['cat', 'dog']
>>> if 'cat' in animals:

print(1)
elif 'dog' in animals:

print(2)
1

Text Mining Project --- Behrang QasemiZadeh ©

Conditionals

• The functions all() and any()can be applied to a list (or other
sequence) to check condition for all or ant items:

• They can be used for writing more natural and concise codes!

>>> sent = ['No', 'good', 'fish', 'goes', 'anywhere',
'without', 'a', 'porpoise', '.']
>>> all(len(w) > 4 for w in sent)
False
>>> any(len(w) > 4 for w in sent)
True

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: String, List, Tuple

• Sequence data types can be sliced, indexed and they have length:

>>> t = "passau", "Innstr", 94032
>>> t[0]
'passau'
>>> t[1:]
('Innstr', 94032)
>>> len(t)
3
>>>

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: String, List, Tuple

• Iterations over a sequence is common:

Python Expression Comment
for item in s iterate over the items of s
for item in sorted(s) iterate over the items of s in order
for item in set(s) iterate over unique elements of s
for item in reversed(s) iterate over elements of s in reverse
for item in set(s).difference(t) iterate over elements of s not in t

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: String, List, Tuple

• Iterations over a sequence is common:

Python Expression Comment
for item in s iterate over the items of s
for item in sorted(s) iterate over the items of s in order
for item in set(s) iterate over unique elements of s
for item in reversed(s) iterate over elements of s in reverse
for item in set(s).difference(t) iterate over elements of s not in tYou can combine the sequence

functions in a variety of way:
reverse(sorted(set(s)))

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: String, List, Tuple

• One sequence type can be converted into another one:
• tuple(s) convers any kind of sequence to tuple;
• list(s) converts any kind of sequence to list;
• join() convert a sequence to string.

• Other objects (such as the FreqDist)can be converted to a
sequence(e.g. FreqDist to list).

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: String, List, Tuple

• One sequence type can be converted into another one:
• tuple(s) convers any kind of sequence to tuple;
• list(s) converts any kind of sequence to list;
• join() convert a sequence to string.

• Other objects (such as the FreqDist)can be converted to a
sequence(e.g. FreqDist to list).

>>> raw = 'Red lorry, yellow lorry, red lorry, yellow lorry.'
>>> text = nltk.word_tokenize(raw)
>>> fdist = nltk.FreqDist(text)
>>> sorted(fdist)
[',', '.', 'Red', 'lorry', 'red', 'yellow']
>>> for key in fdist:

print(key + ':', fdist[key], end='; ')
lorry: 4; red: 1; .: 1; ,: 3; Red: 1; yellow: 2

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: String, List, Tuple

• There are functions that modify the structure of a sequence and
which can be handy for language processing.

•zip() takes the items of two or more sequences and "zips" them
together into a single list of tuples.

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: String, List, Tuple

• There are functions that modify the structure of a sequence and
which can be handy for language processing.

•zip() takes the items of two or more sequences and "zips" them
together into a single list of tuples.>>> words = ['I', 'turned', 'off', 'the', 'spectroroute']

>>> tags = ['noun', 'verb', 'prep', 'det', 'noun']
>>> zip(words, tags)
<zip object at ...>

>>> list(zip(words, tags))
[('I', 'noun'), ('turned', 'verb'), ('off', 'prep'), ('the', 'det'), ('spectroroute', 'noun')]

>>> list(enumerate(words))
[(0, 'I'), (1, 'turned'), (2, 'off'), (3, 'the'), (4, 'spectroroute')]

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: String, List, Tuple

• There are functions that modify the structure of a sequence and
which can be handy for language processing.

•zip() takes the items of two or more sequences and "zips" them
together into a single list of tuples.>>> words = ['I', 'turned', 'off', 'the', 'spectroroute']

>>> tags = ['noun', 'verb', 'prep', 'det', 'noun']
>>> zip(words, tags)
<zip object at ...>

>>> list(zip(words, tags))
[('I', 'noun'), ('turned', 'verb'), ('off', 'prep'), ('the', 'det'), ('spectroroute', 'noun')]

>>> list(enumerate(words))
[(0, 'I'), (1, 'turned'), (2, 'off'), (3, 'the'), (4, 'spectroroute')]

Pay attention to the
length of the lists that

are zipped!

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: String, List, Tuple

• For some NLP tasks it is necessary to cut up a sequence into two or
more parts.

• Example: 80% of a corpus for train and 20% for test!
• This can be achieved by slicing

>>> text = nltk.corpus.nps_chat.words()
>>> cut = int(0.9 * len(text))
>>> training_data, test_data = text[:cut], text[cut:]
>>> text == training_data + test_data
True
>>> len(training_data) / len(test_data)
9.0

Text Mining Project --- Behrang QasemiZadeh ©

Quiz

What is the output of the following code snippet? Can you explain each
line of this code?

>>> words = 'I turned off the spectroroute'.split()
>>> wordlens = [(len(word), word) for word in words]
>>> wordlens.sort()
>>> ' '.join(w for (_, w) in wordlens)

Text Mining Project --- Behrang QasemiZadeh ©

Quiz

What is the output of the following code snippet? Can you explain each
line of this code?

>>> words = 'I turned off the spectroroute'.split()
>>> wordlens = [(len(word), word) for word in words]
>>> wordlens.sort()
>>> ' '.join(w for (_, w) in wordlens)
'I off the turned spectroroute'

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: When to Use What!

• String: in the beginning and the end:
• Typical when reading in some text and producing output for us to read.

• Lists and tuples are used in the middle, but for different purposes.

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: When to Use What!

• String: in the beginning and the end:
• Typical when reading in some text and producing output for us to read.

• A list is typically a sequence of objects with the following condition:
• All objects have the same type;
• The length of list is not fixed and can be changed at any time;
• We often use lists to hold sequences of words.

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: When to Use What!

• String: in the beginning and the end:
• Typical when reading in some text and producing output for us to read.

• A list is typically a sequence of objects with the following condition:
• All objects have the same type;
• The length of list is not fixed and can be changed at any time;
• We often use lists to hold sequences of words.

• A tuple, however, is typically a collection of objects:
• Objects have different types;
• The length of tuple is fixed.
• We often use tuples to represent records (a collection of various fields about some entity).

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: When to Use What!

• String: in the beginning and the end:
• Typical when reading in some text and producing output for us to read.

• A list is typically a sequence of objects with the following condition:
• All objects have the same type;
• The length of list is not fixed and can be changed at any time;
• We often use lists to hold sequences of words.

• A tuple, however, is typically a collection of objects:
• Objects have different types;
• The length of tuple is fixed.
• We often use tuples to represent records (a collection of various fields about some entity).

Text Mining Project --- Behrang QasemiZadeh ©

Sequences: mutable vs immutable

• Strings are immutable.
• You cannot sort characters in a string;

• Tuples are immutable.
• You cannot sort the elements of a tuple;

• Lists are mutable.
• But, you can sort a list!

Text Mining Project --- Behrang QasemiZadeh ©

Generator Expressions

• Compare the following code snippets:

>>> max([w.lower() for w in word_tokenize(text)])
'word'

>>> max(w.lower() for w in word_tokenize(text))
'word'

Text Mining Project --- Behrang QasemiZadeh ©

Generator Expressions

• Compare the following code snippets:

>>> max([w.lower() for w in word_tokenize(text)])
'word'

>>> max(w.lower() for w in word_tokenize(text))
'word'

An example of
a generator expression

Text Mining Project --- Behrang QasemiZadeh ©

Generator Expressions

• Compare the following code snippets:

>>> max([w.lower() for w in word_tokenize(text)])
'word'

>>> max(w.lower() for w in word_tokenize(text))
'word'

An example of
a generator expression

Text Mining Project --- Behrang QasemiZadeh ©

Generator Expressions

• Compare the following code snippets:

>>> max([w.lower() for w in word_tokenize(text)])
'word'

>>> max(w.lower() for w in word_tokenize(text))
'word'

The list object must be allocated before the value of max() is computed.

Text Mining Project --- Behrang QasemiZadeh ©

Generator Expressions

• Compare the following code snippets:

>>> max([w.lower() for w in word_tokenize(text)])
'word'

>>> max(w.lower() for w in word_tokenize(text))
'word'

The list object must be allocated before the value of max() is computed.

The data is streamed to the calling function (max() does not need to
store and access the whole list)

Text Mining Project --- Behrang QasemiZadeh ©

Generator Expressions

• Compare the following code snippets:

>>> max([w.lower() for w in word_tokenize(text)])
'word'

>>> max(w.lower() for w in word_tokenize(text))
'word'

The list object must be allocated before the value of max() is computed.

The data is streamed to the calling function (max() does not need to
store and access the whole list)

Text Mining Project --- Behrang QasemiZadeh ©

Generator Expressions

• Compare the following code snippets:

>>> max([w.lower() for w in word_tokenize(text)])
'word'

>>> max(w.lower() for w in word_tokenize(text))
'word'

The list object must be allocated before the value of max() is computed.

The data is streamed to the calling function (max() does not need to
store and access the whole list)

This could
be slow.

Text Mining Project --- Behrang QasemiZadeh ©

Let’s have a little break!

Text Mining Project --- Behrang QasemiZadeh ©

Python Style!

• No, we are not talking about poor pythons skin!
• pythons are hunted in Indonesia and Malaysia,

and species are threatened.

• We are talking about more civilized choices:
• variable names;
• Spacing;
• comments, etc.

Text Mining Project --- Behrang QasemiZadeh ©

Python Style!

• A style guide for Python code can be found at
https://www.python.org/dev/peps/pep-0008/.

• The most important matter the style guide is consistency.
• The goal is to improve readability.

• This is important specifically when you are working in teams.

Text Mining Project --- Behrang QasemiZadeh ©

https://www.python.org/dev/peps/pep-0008/

Python Style!

• Lines should be less than 80 characters long:
• Break a line inside parentheses, brackets, or braces;
• Add extra parentheses;
• And, you can always add a backslash at the end of the line that is broken.

• Remember that the indentation of blocks of code is not the matter of
choice (4 space character):

• Spaces are the preferred indentation method.
• Most editor does the automatic indent.

Text Mining Project --- Behrang QasemiZadeh ©

Python Style!

• From https://www.python.org/dev/peps/pep-0008 see also:
• Whitespace in Expressions and Statements
• Naming Conventions
• Version bookkeeping
• Comments
• etc.

Text Mining Project --- Behrang QasemiZadeh ©

https://www.python.org/dev/peps/pep-0008

Procedural vs Declarative Style

• Compare these two code snippets (yellow and green blocks):

>>> tokens = nltk.corpus.brown.words(categories='news')
>>> count = 0
>>> total = 0
>>> for token in tokens:

count += 1
total += len(token)

>>> total / count
4.401545438271973

>>> total = sum(len(t) for t in tokens)
>>> print(total / len(tokens))
4.401...

Text Mining Project --- Behrang QasemiZadeh ©

Procedural vs Declarative Style

• Compare these two code snippets (yellow and green blocks):

>>> tokens = nltk.corpus.brown.words(categories='news')
>>> count = 0
>>> total = 0
>>> for token in tokens:

count += 1
total += len(token)

>>> total / count
4.401545438271973

>>> total = sum(len(t) for t in tokens)
>>> print(total / len(tokens))
4.401...

A procedural
style!

Text Mining Project --- Behrang QasemiZadeh ©

Procedural vs Declarative Style

• Compare these two code snippets (yellow and green blocks):

>>> tokens = nltk.corpus.brown.words(categories='news')
>>> count = 0
>>> total = 0
>>> for token in tokens:

count += 1
total += len(token)

>>> total / count
4.401545438271973

>>> total = sum(len(t) for t in tokens)
>>> print(total / len(tokens))
4.401...

Declarative
style!

A procedural
style!

Text Mining Project --- Behrang QasemiZadeh ©

Procedural vs Declarative Style

• Compare these two code snippets (yellow and green blocks):

>>> tokens = nltk.corpus.brown.words(categories='news')
>>> count = 0
>>> total = 0
>>> for token in tokens:

count += 1
total += len(token)

>>> total / count
4.401545438271973

>>> total = sum(len(t) for t in tokens)
>>> print(total / len(tokens))
4.401...

Declarative
style!

A procedural
style!

Text Mining Project --- Behrang QasemiZadeh ©

Procedural vs Declarative Style

• Compare these two code snippets (yellow and green blocks):

>>> tokens = nltk.corpus.brown.words(categories='news')
>>> count = 0
>>> total = 0
>>> for token in tokens:

count += 1
total += len(token)

>>> total / count
4.401545438271973

>>> total = sum(len(t) for t in tokens)
>>> print(total / len(tokens))
4.401...

Declarative
style!

A procedural
style!

READ and PRACTICE!

Text Mining Project --- Behrang QasemiZadeh ©

Structured Programming Using Functions

• Functions provide an effective way to reuse and package
code.

• Using functions has the benefit of
• Saving space in our program;
• Improving the readability of our codes;
• Easing code maintenance, debugging and upgrades.

• Well-structured programs usually make extensive use of
functions.

• A block of code longer than 10-20 lines must be decomposed
into multiple functions.

Text Mining Project --- Behrang QasemiZadeh ©

Structured Programming Using Functions

import re
def get_text(file):

"""Read text from a file, normalizing whitespace and stripping HTML markup."""
text = open(file).read()
text = re.sub(r'<.*?>', ' ', text)
text = re.sub('\s+', ' ', text)
return text

Text Mining Project --- Behrang QasemiZadeh ©

Structured Programming Using Functions

import re
def get_text(file):

"""Read text from a file, normalizing whitespace and stripping HTML markup."""
text = open(file).read() # and we know how to add comments
text = re.sub(r'<.*?>', ' ', text)
text = re.sub('\s+', ' ', text)
return text

Docstring (to be used for help()).

Argument (call-by-value)

body

Return statement

Text Mining Project --- Behrang QasemiZadeh ©

Variable Scope

• Function definitions create a new, local scope for variables.
• The name is not visible outside the function, or in other functions.
• You can choose variable names without being concerned about collisions with

names used in your other function definitions.

• Resolving variable names (LGB rule):
• The Python interpreter first tries to resolve the name with respect to the

names that are local to the function.
• If nothing is found, the interpreter checks if it is a global name within the

module.
• Finally, if that does not succeed, the interpreter checks if the name is a

Python built-in.

Text Mining Project --- Behrang QasemiZadeh ©

Checking Parameter Types

• Python doesn’t let us to declare the type of a variable.
• This permits us to define functions that are flexible about the type of their

arguments.

• In a defensive style of programming, we may want to check the type
of arguments:

• A naive approach would be to check the type of the argument
using if not type(X) is Y, e.g. a string variable of type str.

• Dangerous because the calling program may not detect the None output of the if
statement properly.

• Using an assert statement is a safer choice.
• If assert fails, it will produce an error that cannot be ignored.

Text Mining Project --- Behrang QasemiZadeh ©

Checking Parameter Types

>>> def tag(word):
assert isinstance(word, basestring), "argument to tag() must be a string"
if word in ['a', 'the', 'all']:

return 'det‘
else:

return 'noun'

Text Mining Project --- Behrang QasemiZadeh ©

Checking Parameter Types

>>> def tag(word):
assert isinstance(word, basestring), "argument to tag() must be a string"
if word in ['a', 'the', 'all']:

return 'det‘
else:

return 'noun'

isinstance checks to see if the object passed in the first argument is of the
type of any of the type objects passed in the second argument.

Text Mining Project --- Behrang QasemiZadeh ©

Documenting Functions

• For the simplest functions, a one-line docstring is usually adequate:
• a triple-quoted string containing a complete sentence on a single line.

• For non-trivial functions, consider providing docsrting followed by a
blank line, then a more detailed description of the functionality

• Docsrting can also include a doctest block, illustrating the use of the
function and the expected output.

• Look into docutils module.

Text Mining Project --- Behrang QasemiZadeh ©

Documenting Functions

• Docstrings should document the type of each parameter to the function,
and the return type.

• Docstring can be a simple text, however, you can also use some kind of
markup language for documentation.

• NLTK uses the Sphinx markup language
• http://sphinx-doc.org/index.html
• Sphinx markups can be converted into richly structured API documentation.

• Output formats: HTML, LaTeX, ePub, Texinfo, manual pages, plain text
• Extensive cross-references:
• Hierarchical structure
• Automatic indices
• Code handling
• Extensions, etc.

Text Mining Project --- Behrang QasemiZadeh ©

http://sphinx-doc.org/index.html

Advanced Features of Functions

• Functions as Arguments
• Python lets us pass a function as an argument to another function.
• This lets us abstract out the operation, and apply a different operation on

the same data.

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Functions as Arguments
• Python lets us pass a function as an argument to another function.
• This lets us abstract out the operation, and apply a different operation on

the same data.

>>> sent = ['Take', 'care', 'of', 'the', 'sense’]
>>> def extract_property(prop):

return [prop(word) for word in sent]
>>> extract_property(len)
[4, 4, 2, 3, 5]
>>> def last_letter(word):

return word[-1]
>>> extract_property(last_letter)
['e', 'e', 'f', 'e', 'e']

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Functions as Arguments
• Python lets us pass a function as an argument to another function.
• This lets us abstract out the operation, and apply a different operation on

the same data.
• We can also use lambda expressions.

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Functions as Arguments
• Python lets us pass a function as an argument to another function.
• This lets us abstract out the operation, and apply a different operation on

the same data.
• We can also use lambda expressions.

>>> extract_property(lambda w: w[-1])
['e', 'e', 'f', 'e', 'e']

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Functions as Arguments
• Python lets us pass a function as an argument to another function.
• This lets us abstract out the operation, and apply a different operation on

the same data.
• We can also use lambda expressions.

>>> sent = [‘hello', ‘and', ‘greetings', ‘friends']
>>> sorted(sent)
[‘and', ‘friends', ‘greetings', ‘hello']
>>> sorted(sent, cmp)
[‘and', ‘friends', ‘greetings', ‘hello']
>>> sorted(sent, lambda x, y: cmp(len(y), len(x)))
['greetings', 'friends', 'hello', 'and']

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Accumulative functions
• These functions start by initializing some storage, and iterate over input to

build it up, before returning some final object:

def search1(substring, words):
result = []
for word in words:

if substring in word:
result.append(word)

return result

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Accumulative functions
• These functions start by initializing some storage, and iterate over input to

build it up, before returning some final object:

def search2(substring, words):
for word in words:

if substring in word:
yield word

def search1(substring, words):
result = []
for word in words:

if substring in word:
result.append(word)

return result

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Accumulative functions
• These functions start by initializing some storage, and iterate over input to

build it up, before returning some final object:

def search2(substring, words):
for word in words:

if substring in word:
yield word

def search1(substring, words):
result = []
for word in words:

if substring in word:
result.append(word)

return result

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Accumulative functions
• These functions start by initializing some storage, and iterate over input to

build it up, before returning some final object:

def search2(substring, words):
for word in words:

if substring in word:
yield word

def search1(substring, words):
result = []
for word in words:

if substring in word:
result.append(word)

return result

• Function search2() is a generator:
• The first time search2()is called, it gets as far as the yield statement and pauses.
• The calling program gets the first word and does any necessary processing.
• Once the calling program is ready for another word, execution of search2()is

continued from where it stopped, until the next time it encounters a yield
statement.

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Higher order functions
• filter() applies the function to each item in the sequence contained in its

second parameter, and retains only the items for which the function returns
True.

>>> def is_content_word(word):
return word.lower() not in ['a', 'of', 'the', 'and', 'will', ',', '.']

>>> sent = ['Take', 'care', 'of', 'the', 'sense', ',', 'and', 'the',
... 'sounds', 'will', 'take', 'care', 'of', 'themselves', '.']
>>> list(filter(is_content_word, sent))
['Take', 'care', 'sense', 'sounds', 'take', 'care', 'themselves']
>>> [w for w in sent if is_content_word(w)]
['Take', 'care', 'sense', 'sounds', 'take', 'care', 'themselves']

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Higher order functions
• filter() applies the function to each item in the sequence contained in its

second parameter, and retains only the items for which the function returns
True.

• map() applies a function to every item in a sequence.

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Higher order functions
• filter() applies the function to each item in the sequence contained in its

second parameter, and retains only the items for which the function returns
True.

• map() applies a function to every item in a sequence.

>>> lengths = map(len, nltk.corpus.brown.sents(categories='news'))
>>> sum(lengths) / len(lengths)
21.75081116158339
>>> lengths = [len(sent) for sent in nltk.corpus.brown.sents(categories='news')]
>>> sum(lengths) / len(lengths)
21.75081116158339

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Named Arguments
• When a function gets a lot of arguments, it is easy to get confused about the

correct order.
• We can refer to parameters by name, and even assign them a default value.

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Named Arguments
• When a function gets a lot of arguments, it is easy to get confused about the

correct order.
• We can refer to parameters by name, and even assign them a default value.

>>> def repeat(msg='<empty>', num=1):
return msg * num

>>> repeat(num=3)
'<empty><empty><empty>'
>>> repeat(msg='Alice')
'Alice'
>>> repeat(num=5, msg='Alice')
'AliceAliceAliceAliceAlice'

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Named Arguments
• When a function gets a lot of arguments, it is easy to get confused about the

correct order.
• We can refer to parameters by name, and even assign them a default value.

>>> def repeat(msg='<empty>', num=1):
return msg * num

>>> repeat(num=3)
'<empty><empty><empty>'
>>> repeat(msg='Alice')
'Alice'
>>> repeat(num=5, msg='Alice')
'AliceAliceAliceAliceAlice'

Keyword
Arguments

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Named Arguments
• When a function gets a lot of arguments, it is easy to get confused about the

correct order.
• We can refer to parameters by name, and even assign them a default value.
• We can define a function that takes an arbitrary number of unnamed and

named arguments.

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Named Arguments
• When a function gets a lot of arguments, it is easy to get confused about the

correct order.
• We can refer to parameters by name, and even assign them a default value.
• We can define a function that takes an arbitrary number of unnamed and

named arguments.

>>> def generic(*args, **kwargs):
print(args)
print(kwargs)

>>> generic(1, "African swallow", monty="python")
(1, 'African swallow') {'monty': 'python'}

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Named Arguments
• When a function gets a lot of arguments, it is easy to get confused about the

correct order.
• We can refer to parameters by name, and even assign them a default value.
• We can define a function that takes an arbitrary number of unnamed and

named arguments.

>>> def generic(*args, **kwargs):
print(args)
print(kwargs)

>>> generic(1, "African swallow", monty="python")
(1, 'African swallow') {'monty': 'python'}

All the
unnamed

parameters The
keyword

arguments

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Named Arguments
• When a function gets a lot of arguments, it is easy to get confused about the

correct order.
• We can refer to parameters by name, and even assign them a default value.
• We can define a function that takes an arbitrary number of unnamed and

named arguments.

>>> def generic(*args, **kwargs):
print(args)
print(kwargs)

>>> generic(1, "African swallow", monty="python")
(1, 'African swallow') {'monty': 'python'}

You can use the *args in other
occasions: a short hand to denote

the items in a list, e.g. args[0],
args[1], args[2], etc.

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Named Arguments
• When a function gets a lot of arguments, it is easy to get confused about the

correct order.
• We can refer to parameters by name, and even assign them a default value.
• We can define a function that takes an arbitrary number of unnamed and

named arguments.
• Caution:

• Do not use mutable objects as default values of arguments.
• If you work with files, then it is a good practice to close them afterwards.

• Use keyword with to ask Python to take care after it automatically.

Text Mining Project --- Behrang QasemiZadeh ©

Advanced Features of Functions

• Named Arguments
• When a function gets a lot of arguments, it is easy to get confused about the

correct order.
• We can refer to parameters by name, and even assign them a default value.
• We can define a function that takes an arbitrary number of unnamed and

named arguments.
• Caution:

• Do not use mutable objects as default values of arguments.
• If you work with files, then it is a good practice to close them afterwards.

• Use keyword with to ask Python to take care after it automatically.

>>> with open("lexicon.txt") as f:
data = f.read()

Text Mining Project --- Behrang QasemiZadeh ©

Program Development

• Programming is a skill that comes with experience.
• Everybody can program if they practice! It is similar to speaking a new

language.

Text Mining Project --- Behrang QasemiZadeh ©

Program Development

• Programming is a skill that comes with experience.
• Everybody can program if they practice! It is similar to speaking a new

language.
• In order to be a good programmer, you need knowledge about:

• Algorithm Design
• Structured Programming
• Knowledge of the syntax of your programming language (keywords and

conditional structures, loops, etc.)
• Test methods for trouble-shooting and debugging

Text Mining Project --- Behrang QasemiZadeh ©

Program Development

• Programming is a skill that comes with experience.
• Everybody can program if they practice! It is similar to speaking a new

language.
• In order to be a good programmer, you need knowledge about:

• Algorithm Design
• Structured Programming
• Knowledge of the syntax of your programming language (keywords and

conditional structures, loops, etc.)
• Test methods for trouble-shooting and debugging

Text Mining Project --- Behrang QasemiZadeh ©

Structure of a Python Module

• Module is used to bring logically-related definitions and functions
together:

• The goal is to facilitate re-use and abstraction.
• An individual .py file is a Python module.

• For example, you can group all your I/O methods.

Text Mining Project --- Behrang QasemiZadeh ©

Structure of a Python Module

• Module is used to bring logically-related definitions and functions
together:

• The goal is to facilitate re-use and abstraction.
• An individual .py file is a Python module.

• For example, you can group all your I/O methods.

• The usual structure for a module:
• Commented lines, e.g. for copyright notice, license information, revision history, etc.
• Module level docstring
• Import statements required for the module
• Global variables
• A series of function definitions that make up most of the module

Text Mining Project --- Behrang QasemiZadeh ©

Structure of a Python Module

• Module is used to bring logically-related definitions and functions
together:

• The goal is to facilitate re-use and abstraction.
• An individual .py file is a Python module.

• For example, you can group all your I/O methods.

• The usual structure for a module:
• Commented lines, e.g. for copyright notice, license information, revision history, etc.
• Module level docstring
• Import statements required for the module
• Global variables
• A series of function definitions that make up most of the module

• Some module variables and functions must be only used within the module:
• Use an underscore in the beginning of their names to hide them, e.g. _helper()

• These names won’t be imported when using from module import *
• List the externally accessible names of a module using a special built-in variable

__all__ = [‘method1', ‘variablen'].

Text Mining Project --- Behrang QasemiZadeh ©

Multi-Module Programs

Text Mining Project --- Behrang QasemiZadeh ©

Multi-Module Programs

Software Engineering
Design patterns

Etc.

Text Mining Project --- Behrang QasemiZadeh ©

Packages

• Python has a concept of packages:
• Think of packages as the directories on a file system and modules as files

within directories (there are some important details here).
• Think of a packages of a special kind module.

Text Mining Project --- Behrang QasemiZadeh ©

Packages

• Python has a concept of packages:
• Think of packages as the directories on a file system and modules as files

within directories (there are some important details here).
• Think of a packages of a special kind module.
• Packages are organized hierarchically:

• Packages may themselves contain subpackages, as well as regular modules.
• You might have a module called sys and a package called email, which in turn has a

subpackage called email.mime and a module within that subpackage called
email.mime.text.

Text Mining Project --- Behrang QasemiZadeh ©

Packages

• Python has a concept of packages:
• Think of packages as the directories on a file system and modules as files

within directories (there are some important details here).
• Think of a packages of a special kind module.
• Packages are organized hierarchically:

• Packages may themselves contain subpackages, as well as regular modules.
• You might have a module called sys and a package called email, which in turn has a

subpackage called email.mime and a module within that subpackage called
email.mime.text.

import foo # foo imported and bound locally

import foo.bar.baz # foo.bar.baz imported, foo bound locally

import foo.bar.baz as fbb # foo.bar.baz imported and bound as fbb

from foo.bar import baz # foo.bar.baz imported and bound as baz

from foo import attr # foo imported and foo.attr bound as attr

Text Mining Project --- Behrang QasemiZadeh ©

A sample of Python Libraries (Packages)

• Matplotlib
• NetworkX
• CSV
• NumPy
• …

Text Mining Project --- Behrang QasemiZadeh ©

Matplotlib

• A packge for visualizing data:
• Sophisticated plotting functions with a MATLAB-style interface;
• Available from http://matplotlib.sourceforge.net/ .

• You are going to use this library for writing reports and generating
results.

Text Mining Project --- Behrang QasemiZadeh ©

http://matplotlib.sourceforge.net/

Matplotlib

• A packge for visualizing data:
• Sophisticated plotting functions with a MATLAB-style interface;
• Available from http://matplotlib.sourceforge.net/ .

• You are going to use this library for writing reports and generating
results.

• Browse Matplotlib website at http://matplotlib.org
• For inspiration, look at the Matplotlib Gallary (/gallery.html)
• For learning to use the package, look at /examples/api/index.html
• If you use it, please remember to cite Matplotlib in your final report!

Text Mining Project --- Behrang QasemiZadeh ©

http://matplotlib.sourceforge.net/
http://matplotlib.org/

Matplotlib

• A packge for visualizing data:
• Sophisticated plotting functions with a MATLAB-style interface;
• Available from http://matplotlib.sourceforge.net/ .

• You are going to use this library for writing reports and generating
results.

• Browse Matplotlib website at http://matplotlib.org
• For inspiration, look at the Matplotlib Gallary (/gallery.html)
• For learning to use the package, look at /examples/api/index.html
• If you use it, please remember to cite Matplotlib in your final report!

Remember, the goal is to
express (then impress).

Use the right plot for presenting
your findings.

Text Mining Project --- Behrang QasemiZadeh ©

http://matplotlib.sourceforge.net/
http://matplotlib.org/

NetworkX

• The NetworkX package is for defining and manipulating graph.
• Graph is a structure consists of nodes and edges.

• NetworkX can be used in conjunction with Matplotlib to visualize
networks, such as WordNet.

• The NetworkX is avialble from https://networkx.lanl.gov/
• Browse the website for inspiration, code examples, etc.

Text Mining Project --- Behrang QasemiZadeh ©

https://networkx.lanl.gov/

There are a lot of libraries to use

• CSV
• Python's CSV library can be used to read and write files stored in comma separated

values.
• NumPy

• Provides methods for numerical processing in Python.
• NumPy includes linear algebra functions, which are very useful!

• PyML
• Machine learning in Python.

• Also look at bindings for OpenNLP, Gate, Stanford NLP tools, Mallet, …
• And, even web frameworks (see https://wiki.python.org/moin/WebFrameworks)
• Have a look at Python package index http://pypi.python.org/ before

writing something from scratch!

Text Mining Project --- Behrang QasemiZadeh ©

https://wiki.python.org/moin/WebFrameworks
http://pypi.python.org/

Other important resources

• Always HELP files
• Mailing lists

• For instance, for NLTK look at https://groups.google.com/forum/#!forum/nltk-
users

• For any other third party libraries that you are going to use there are often a
mailing list

Text Mining Project --- Behrang QasemiZadeh ©

https://groups.google.com/forum/%23!forum/nltk-users

	Writing Structured Programs
	Objectives
	Assignment
	Assignment
	Assignment Quiz: basic data type
	Assignment Quiz: basic data type
	Assignment Quiz: basic data type
	Assignment Quiz: basic data type
	Assignment: lists and dictionaries
	Assignment: lists and dictionaries
	Assignment: lists and dictionaries
	Assignment: lists and dictionaries
	Assignment: lists and dictionaries
	Assignment: lists and dictionaries
	Assignment: lists and dictionaries
	Quiz
	Quiz
	Quiz
	Quiz
	Assignment
	Equality and identity
	Conditionals
	Conditionals
	Conditionals
	Sequences: String, List, Tuple
	Sequences: String, List, Tuple
	Sequences: String, List, Tuple
	Sequences: String, List, Tuple
	Sequences: String, List, Tuple
	Sequences: String, List, Tuple
	Sequences: String, List, Tuple
	Sequences: String, List, Tuple
	Sequences: String, List, Tuple
	Quiz
	Quiz
	Sequences: When to Use What!
	Sequences: When to Use What!
	Sequences: When to Use What!
	Sequences: When to Use What!
	Sequences: mutable vs immutable
	Generator Expressions
	Generator Expressions
	Generator Expressions
	Generator Expressions
	Generator Expressions
	Generator Expressions
	Generator Expressions
	Slide Number 48
	Python Style!
	Python Style!
	Python Style!
	Python Style!
	Procedural vs Declarative Style
	Procedural vs Declarative Style
	Procedural vs Declarative Style
	Procedural vs Declarative Style
	Procedural vs Declarative Style
	Structured Programming Using Functions
	Structured Programming Using Functions
	Structured Programming Using Functions
	Variable Scope
	Checking Parameter Types
	Checking Parameter Types
	Checking Parameter Types
	Documenting Functions
	Documenting Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Advanced Features of Functions
	Program Development
	Program Development
	Program Development
	Structure of a Python Module
	Structure of a Python Module
	Structure of a Python Module
	Multi-Module Programs
	Multi-Module Programs
	Packages
	Packages
	Packages
	A sample of Python Libraries (Packages)
	Matplotlib
	Matplotlib
	Matplotlib
	NetworkX
	There are a lot of libraries to use
	Other important resources

