
1/60

Introduction to Semantic Role Labelling

Behrang QasemiZadeh
zadeh@phil.hhu.de

Computational Linguistics Department, HHU – DRAFT

October 2018–January 2019

2/60

Recap: Semantic Role Labeling (SRL) as a Classification
Task

1

1Source: https://www.nltk.org/book/ch06.html; (Bird et al., 2009,
Chap. 6)

https://www.nltk.org/book/ch06.html

3/60

Recap: SRL as a Classification Task

We discussed:

Identification Problem: Finding candidates (constituents)
which can potentially be semantic role fillers for a target verb;

Feature extraction: feature-based representation of
candidates

Additionally, we learned that for training purposes, we must
assign class labels to candidates and their feature-based
representations.

4/60

Recap: SRL as a Classification Task (contd.)
For example, for the verb join in:

[ARG0 Pierre Vinken , 61 years old ,] [ARGM-MOD will] [rel join]
[ARG1 the board] [ARGM-PRD as a nonexecutive director]
[ARGM-TMP Nov. 29] .

and its constituent parse tree:

S

.

.

VP

VP

NP-TMP

CD

29

NNP

Nov.

PP-CLR

NP

NN

director

JJ

nonexecutive

DT

a

IN

as

NP

NN

board

DT

the

VB

join

MD

will

NP-SBJ

,

,

ADJP

JJ

old

NP

NNS

years

CD

61

,

,

NP

NNP

Vinken

NNP

Pierre

5/60

Recap: SRL as a Classification Task (contd.)

we can get candidates using a method like Xue and Palmer (2004) and label them:

ARG0

ADJP

JJ

old

NP

NNS

years

CD

61

,

,

NP

NNP

Vinken

NNP

Pierre

ARG1

NN

board

DT

the

ARG-M

NP

NN
director

JJ
nonexecutive

DT
a

IN

as

ARG-M

CD

29

NNP

Nov.

NEGATIVE-EXAMPLE

JJ

old

NP

NNS

years

CD

61

6/60

Recap: SRL as a Classification Task (contd.)

And in turn, perform feature extraction for each candidate and sort
and represent them in a tabular structure such as (one row per
candidate, class labels and features listed as columns)

Features
Class/Role Label Category HeadWord R-Position SubCat . . .

ARG0 NP Vinken Left {N,N,P,N} . . .
ARG1 NP board Right {N,N,P,N} . . .

.

7/60

Recap: SRL as a Classification Task (contd.)

The shape of this table is decided by two things:

a) The way you model your task (e.g. feature extraction process –
what you define as feature adds (or removes) columns to
(from) the table in the previous slide);

b) Your training data (alters the number of rows, the content of
the table’s cells, and depending on feature extraction the
number of columns)

In short, (a) and (b), together, decide the number of rows and
columns of your tabular representation (or the structure of it).

8/60

Recap: SRL as a Classification Task (contd.)

For example, one can choose to have two different sub-tasks for a)
identification and b) for label assignment/classification; however,
use the same feature extraction process for both:

Features
Class/Role Label Category HeadWord R-Position SubCat . . .

ARG0 NP Vinken Left {N,N,P,N} . . .
ARG1 NP board Right {N,N,P,N} . . .

Features
Class Label Category HeadWord R-Position SubCat . . .

Positive NP Vinken Left {N,N,P,N} . . .
Positive NP board Right {N,N,P,N} . . .

NEGATIVE NP years Right {N,N,P,N} . . .

Please pay attention to the rows and the class labels.

9/60

Recap: SRL as a Classification Task (contd.)

Alternatively, one may combine the two sub-tasks in one by coming
up the following representation:

Features
Class/Role Label Category HeadWord R-Position SubCat . . .

ARG0 NP Vinken Left {N,N,P,N} . . .
ARG1 NP board Right {N,N,P,N} . . .

NEGATIVE NP years Right {N,N,P,N} . . .

(simply use negative samples as an additional class when training the

semantic labeler)

Please look at Class/Role label and their representations shown
earlier in our training data?

Is it clear that the number of rows of this table depends on your
training data? and that the number of columns depends on features
used to represent them?

Obviously, these are not the only possible designs/situations!

10/60

Into Machine Learning

+ Once the feature extraction is done, any supervised learning
algorithm can be used for building a prediction model.

+ There are numerous choices: probabilistic generative models,
discriminative learning techniques using vector space
mathematics, example-based (aka memory-based) learning,
deep neural networks, information-theoretic models, decision
trees and association rules,

+ There is only one trick: Each class of these learning methods,
expect your extracted features in a specific format, which is
decided mostly by their underlying mathematical framework.

11/60

Into Machine Learning (contd.)

There is only one trick: Each class of these learning methods, expect your extracted

features in a specific format.

Unfortunately, a majority of learning algorithms cannot directly work
on symbolic feature representations such as:

ARG0[NP Vinken Left {N,N,P,N} . . .]

for a candidate constituent (here of type ARG0 but of unknown
type during prediction).

Instead, many algorithms expect numerical representations like
ARG0[0 1 0 0 1 0 0 0 0 0 1 . . .]

12/60

Into Machine Learning (contd.)

or,
ARG0[.23 .34e-7 0 -3.12 .26 0.93 0.78 0.787 . . .]

or even a matrix/tensor such as:

ARG0[
[0.61 0.5 0.4 0.93 0.25 0.87 0.45 0.76 0.3 0.37 0.78 0.32]
[0.46 0.07 0.64 0.71 0.34 0.79 0.93 0.28 0.09 0.9 0.97 0.07]
[0.27 0.38 0.8 0.32 0.08 0.73 0.23 0.68 0.45 0.25 0.03 0.76]
[0.78 0.29 0.58 0.18 0.42 0.44 0.07 0.67 0.21 0.97 0.06 0.21]

]

13/60

Into Machine Learning (contd.)

These numerical records merged in matrix-like structures.

For a number of training records which are represented as an array
of numbers, they form a matrix (vector spaces, contingency tables,
or if it easier to conceptualize, an abstract 2-d coordinate system)
such as:

ARG1 0.78 0.38 0.27 0.59 0.79 0.88 0.49 . . .

ARG0 0.06 0.94 0.81 0.87 0.69 0.76 0.35 . . .

ARG-M 0.46 0.05 0.78 0.67 0.62 0.58 0.25 . . .

ARG0 0.8 0.11 0.56 0.24 0.42 0.94 0.92 . . .

ARG1 0.3 0.21 0.16 0.24 0.42 0.24 0.02 . . .

14/60

Into Machine Learning (contd.)

But, n-dimensional arrays (tensor, coordinate systems, etc.) are also
common. For example, if each of our records are represented by a
matrix, then their aggregation is a tensor like:

ARG1

0.78 0.38 0.27 0.59 0.79 0.88 0.49 . . .

0.06 0.94 0.81 0.87 0.69 0.76 0.35 . . .

0.46 0.05 0.78 0.67 0.62 0.58 0.25 . . .

0.8 0.11 0.56 0.24 0.42 0.94 0.92 . . .

ARG0

0.65 0.17 0.67 0.67 0.93 0.32 0.52 . . .

0.58 0.31 0.56 0.14 0.84 0.23 0.82 . . .

0.91 1 0.37 0.91 0.61 0.43 0.72 . . .

0.45 0.56 0.19 0.33 0.44 0.55 0.42 . . .

ARG-M

0.47 0.24 0.44 0.19 0.67 0.48 0.04 . . .

0.9 0.4 0.59 0.51 0.56 0.21 0.22 . . .

0.68 0.53 0.84 0.9 0.67 0.32 0.04 . . .

0.4 0.51 0.95 0.92 0.59 0.98 0.49 . . .

ARG0

0.26 0.07 0.31 0.86 0.46 0.24 0.29 . . .

0.92 0.82 0.84 0.12 0.34 0.46 0.89 . . .

0.53 0.31 0.24 0.39 0.73 0.56 0.44 . . .

0.88 0.32 0.41 0.88 0.97 0.6 0.87 . . .

ARG0

0.07 0.69 0.68 0.94 0.21 0.29 0.39 . . .

0.15 0.04 0.65 0.99 0.67 0.18 0.07 . . .

0.12 0.62 0.93 0.53 0.38 0.64 0.54 . . .

0.99 0.58 0.73 0.66 0.33 0.36 0.61 . . .

ARG1

0.91 0.95 0.5 0.74 0.72 0.79 0.33 . . .

0.01 0.74 0.8 0.7 0.01 0.21 0.48 . . .

0.1 0.19 0.61 0.06 0.12 0.33 0.58 . . .

0.48 0.83 0.63 0.45 0.08 0.53 0.66 . . .

ARG1

0.33 0.94 0.9 0.38 0.68 0.93 0.21 . . .

1 0.25 0.08 0.5 1 0.23 0.74 . . .

0.08 0.57 0.97 0.48 0.16 0.62 0.04 . . .

0.38 0.89 0.31 0.76 0.62 0.39 0.08 . . .

ARG0

0.55 0.75 0.52 0.34 0.9 0.07 0.2 . . .

0.14 0.12 0.95 0.55 0.02 0.22 0.78 . . .

0.09 0.15 0.54 0.2 0.57 0.68 0.42 . . .

0.34 0.84 0.88 0.95 0.18 0.97 0.24 . . .

15/60

Into Machine Learning (contd.)

As we saw, most of our features have as their value a symbol, e.g.:
for path feature we have values such as ”VP↓NP”, ”NP↑VP↓NP”,
. . . ; similarly, the assigned values to governing category are ”NP”,
”VP”, These, somehow, must be transformed to numbers!

There is no unique way for converting these “literal values” to
numeric ones (but there are some known practices, and caveats
around them).

Mapping from “literal features” to numerical representations must
be decided with respect to the chosen learning algorithm.

In its simplest form, (colloquially put it), our non-numeric feature
values can be converted to sequences of 0s and 1s by assuming our
features being Boolean-valued (e.g., suitable for linear SVM).

16/60

Into Machine Learning (contd.)

Steps for converting raw-feature representations to high-dimensional
sparse numerical vectors:

- Collect all the feature types and their associated values (feature
value pairs fv) in your human-readable feature records; (if you

like, form a string such as is- or has- + feature name + feature-value!);

- Count distinct feature-value pairs in your data (e.g., let’s
assume we arrive to the total number of n);

- Assign each feature-value pair fv to a unique index number i
in which 1 ≤ i ≤ n (in computer codes we often call this a feature

map);

17/60

Into Machine Learning (contd.)

- For each training record in your training set, follow the steps
below:

+ instantiate a vector ~v of size (dimension) n; all
components of ~v are set to 0 (keep track of the associated
class label to the record and thus ~v);

+ for each fv of index x appeared in the training record,
increment the value the vx component of ~v .

- If the training set contains m records, then the result from the
above procedure is a m × n matrix;

- Pass this matrix alongside your class labels to a classifier such
as Support Vector Machines to build a model.

18/60

Numerical feature vector: Example

Let’s review the conversion process through a simple example. Let’s
say we have only 3 records, each represented by features Category,
HeadWord, R-Position, and SubCat, shown blow:

Features
Class/Role Label Category HeadWord R-Position SubCat

ARG0 NP Vinken Left {N,N,P,N}
ARG1 PP board Right {N,N,P,N}
ARG0 NP company Left {N,N}

Table 1: Raw Feature Representation

* Collect all the feature types and their associated values (feature value
pairs fv) in your human-readable feature records.

19/60

Numerical feature vector: Example (contd.)

Features
Class/Role Label Category HeadWord R-Position SubCat

ARG0 NP Vinken Left {N,N,P,N}
ARG1 PP board Right {N,N,P,N}
ARG0 NP company Left {N,N}

Result: is-HeadWord-Vinken, is-HeadWord-board,
is-HeadWord-company, is-Category-NP, is-Category-NP,
is-Category-PP, is-R-Position-Left, is-R-Position-Right,
is-SubCat-{N,N,P,N} is-SubCat-{N,N,P,N}, is-SubCat-{N,N}, . . .

20/60

Numerical feature vector: Example (contd.)
* Count distinct feature-value pairs in your data (e.g., let’s assume we

arrive to the total number of n);

* Assign each feature-value pair fv to a unique index number i in
which 1 ≤ i ≤ n (in computer codes we often call this a feature map);

Distinct Element Count: 9

fv to unique index i (feature map):

is-Category-NP is-Category-PP is-HeadWord-Vinken is-HeadWord-board
1 2 3 4

is-R-Position-Left is-R-Position-Right is-SubCat-{N,N,P,N} is-HeadWord-company is-SubCat-{N,N}
5 6 7 8 9

Table 2: Feature Map: Keep track of indices

21/60

Numerical feature vector: Example (contd.)
For each training record in your training set

* instantiate a ~v of size n (here n = 9);
* for each fv of index x in the training record, increment vx .

~vArg0 =
(
0 0 0 0 0 0 0 0 0

)
Given our raw feature representation (Table 1) feature map
(Table 2):

index(is-Category-NP)=1;

index(is-HeadWord-Vinken)=3;

index(is-R-Position-Left)=5;

index(is-SubCat-{N,N,P,N})=7

~v1
Arg0 =

(
1 0 1 0 1 0 1 0 0

)

22/60

Numerical feature vector: Example (contd.)

is-Category-NP is-Category-PP is-HeadWord-Vinken is-HeadWord-board
1 2 3 4

is-R-Position-Left is-R-Position-Right is-SubCat-{N,N,P,N} is-HeadWord-company is-SubCat-{N,N}
5 6 7 8 9

~v1
Arg0 =

(
1 0 1 0 1 0 1 0 0

)
~v2
Arg1 =

(
0 1 0 1 0 1 1 0 0

)
~v3
Arg0 =

(
1 0 0 0 1 0 0 1 1

)

23/60

Numerical feature vector: Example (contd.)

* If the training set contains m records, then the result from the above
procedure is a m × n matrix;

* Pass this matrix alongside your class labels to a classifier such as Support
Vector Machines to build a model.

with some simplification and assumptions:Arg0
Arg1
Arg0

1 0 1 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0
1 0 0 0 1 0 0 1 1

We have 3 vectors of dimension= 9, i.e., a 3× 9 matrix, which can
be passed to a SVM for learning a model.

24/60

Numerical feature vector: Example (contd.)

For predicting, we use the same feature extraction/conversion
(including the feature map): The resulting vectors are passed to
classifier. Given an unlabeled input, the classifier assign a class label
to input such as ARG0, ARG1, etc. (i.e., labels used during
training).

For instance, as its input our classifier gets(
1 0 1 0 1 0 1 0 0

)
and as its output it gives us a label such as:

ARG0

25/60

Numerical feature vectors

The simplified one-hot/Boolean vectors are not sufficient for a)
representing features of continues value, and b) for processing in
several classification frameworks. For instance:

- You may define a feature as the normalized length of path
which can take a value between 0 and 1; and/or,

- The frequency of head-word and target verb collocations; . . .

In this case, although we can use the same procedure (feature map)
for inserting them in our numeric representation (and/or use some
method for converting continues values to discrete ones) extra
caution is required, the least of which is to make sure that they are
scaled properly.

26/60

Numerical feature vectors (contd.)

Our Boolean representation may also be redundant (although not
necessarily) for probabilistic methods such as

in the so-called lattice backoff method of Gildea and Jurafsky
(2002), in which we must calculate probabilities of class labels
given a feature-vector/observations.

27/60

Naive Bayesian Classifier

Let’s say we want to use a naive Bayesian classifier, for which we
need to compute joint probabilities.

Even if we assume that all our feature are discrete, and that they
are modelled as discussed in the past few slides, we still need to do
some ”processes” on our representation to compute probabilities.

We could do these ”processes” on demand, i.e., every-time we want
to compute a probability, but that would be inefficient and time
consuming (this is mostly what is done under the label training):

We process our feature vectors to a contingency table
(e.g., keep track the sum of values in the rows and
columns and the whole table); compute and cache some
of probabilities, etc.

28/60

Naive Bayesian Classifier (contd.)

We compute probabilities directly on our feature representation
Table 1. But, this does not mean that we cannot use the
Boolean-valued table representation.

29/60

Naive Bayesian Classifier (contd.)

Given a set of observations/symptoms/effects/features
X = [x1, . . . , xn] (i.e., our feature vectors) for a candidate
constitute, what is the probability of it being of semantic role si?
(for all si in our training set, e.g., ARG0, ARG1, etc.)

p(si |X) = P(X |si)×p(si)
P(X) (i.e., the Bayes’ theorem).

p(X) is a constant value and can be removed from computations:

p(si |X) = p(X |si)× P(si).

which in turn (using joint probabilities, chain rule and conditional
independence):

p(si |x1, . . . , xn) = p(si)
∏n

i=1 p(xi |si)

30/60

Naive Bayesian Classifier (contd.)

p(si |x1, . . . , xn) = p(si)
∏n

i=1 p(xi |si)

p(xi |si) and P(si) can be computed easily from the
contingency/probability table, right?!

Why conditional independence assumption? When we add
more features, the total number of the representations for the joint
distribution explodes, to the extent that it becomes computationally
intractable to compute.

To solve this problem, we use conditional independence, i.e., by
assuming that observing one feature (e.g., is-R-Position-Left) has
nothing to do with observing another one (e.g., observing
is-HeadWord-company).

31/60

Naive Bayesian Classifier (contd.)

To classify a candidate, therefore we compute

P(si |X) = p(si)
n∏

i=1

p(xi |si)

for all class labels si in our data C (e.g., C = {ARG0 ,ARG1 , . . .})
and we choose the si with the maximum probability, which is often
written as:

s = arg maxsi∈{ARG0,ARG1,...} P(si |X), or equivalently as
s = arg maxsi∈{ARG0,ARG1,...} p(si)

∏n
i=1 p(xi |si)

32/60

Test Naive Classifier

Question: Given feature Table 1 as training data, what is the
probability of a candidate with the following feature vector being of
class ARG0 (sorry if it is too simple for you)?!

Category HeadWord R-Position SubCat

NP Vinken Left {N,N}

33/60

Test Naive Classifier (contd.)
We use the general formula:

P(si |X) = p(si)
n∏

i=1

p(xi |si)

Since we look for the probability of the class ARG0

P(ARG0|X) = p(ARG0)
n∏

i=1

p(xi |ARG0)

and we have
X = [Category = NP,HeadWord = Vinken,R − Position = Left, SubCat = {N,N}]

indeed, p(ARG0) = 2
3 and that p(Category = NP|ARG0) = 1,

p(HeadWord = Vinken|ARG0) = 1
2 ,

p(R − Position = Left|ARG0) = 1, and
p(SubCat = {N,N}|ARG0) = 1

2 , which gives us

p(ARG0|X) = 2
3 ∗ 1 ∗ 1

2 ∗ 1 ∗ 1
2 = 1

6 ≈ 0.16

34/60

Smoothing/Interpolation/Back-off; General Idea

In real applications, frequently we must compute class probabilities
from large feature vectors X = {x1 . . . xn}, in which for some xj = v
we have p(xj = v |si) = 0. This p(xj = v |si) = 0 cancels the effect
of all other p(xi |si)s (remember we have a product in our formula).

A usual cause for this problem are feature values (or their
combinations) that are not seen in the training set.

35/60

Smoothing/Interpolation/Back-off; General Idea (contd.)

For example, given Table 1 as training data, what is the probability
of the following record being ARG0 or ARG1:

Category HeadWord R-Position SubCat

NP John Left {N,N}

The result is 0 for both classes (but isn’t more like ARG0)?!

We would need to compute class probabilities when
HeadWord=John: The probability of p(HeadWord = John|Arg0),
p(HeadWord = John|Arg1) . . . aren’t they all zero?!

Given our formula P(si |X) = p(si)
∏n

i=1 p(xi |si), we arrive to
p(si |X) = 0 since 0 multiplied to other probabilities yields 0.

36/60

Smoothing/Interpolation/Back-off; General Idea (contd.)

To avoid the problem caused by p = 0, we use
smoothing/interpolation/back-off methods.

For instance, using additive smoothing, instead of
p(HeadWord = John|Arg0) = 0

3 , we can use
p(HeadWord = John|Arg0) = 1

3+3 (one additional 1 per number of
distinct feature values in denominator)

Smoothing/interpolation (aka Jelinek-Mercer smoothing)/back-off
(Katz smoothing), which are named in our textbook, are solutions
for problems such as sketched above (unknown or zero probability).

Other smoothing techniques used in NLP tasks: Good-Turing
estimate, Stupid back-off, Witten-Bell smoothing, Kneser-Ney
smoothing, Discounting smoothing, . . .

37/60

Naive classification method wrap-up

These very simple ideas can lead you to really complex systems.

The basic steps, building feature tables, forming vectors, or
computing probabilities are simple essential steps that are required
in any sophisticated system.

38/60

Word Embedding and Dimension Reduction

In modern neural networks, the sparse feature vector is often
replaced by (or appended to) a set of “word/symbol embeddings”.

Essentially, word embedding is another name for feature vectors.

In word embeddings (aka. word vectors), the vectors/embeddings
represent words. These vectors often assumed to have a low
dimension, e.g., 50 < n < 1500.

Word vectors are essentially the same as feature vectors: Features
simply capture a correlation between word co-occurrences
(sometimes a little more than word co-occurance/collocations).

39/60

Word Embedding and Dimension Reduction (contd.)

Word vectors and the correlations can be learned from large corpora
using a neural network (e.g., word2vec), or using a combination of
other (perhaps simpler) statistical techniques:

* Let’s assume we have a corpus which contains n distinct words;

* Assign each word w to a unique index 1 ≤ i ≤ n;

* To each word wi assign an empty n-dimensional vector; ~wi ;

* Scan the input corpus, if wi co-occurs with wj (e.g., within the
same line or chunk of text) then ~wi [index(wj)] + + and
~wj [index(wi)] + + (++ means increment by 1), which means:

+ Find the assigned index to wi and wj (i.e., index(wi) and
index(wj), e.g., index(wj) = x and index(wi) = y).

40/60

Word Embedding and Dimension Reduction (contd.)

+ Assert the co-occurrence of these words simply through
changing the component x and y of ~wi and ~wj , i.e.,
~wi [x] = ~wi [x] + 1 and ~wj [y] = ~wj [y] + 1

* Out of this process you will have a co-occurrence matrix, which
you can use for building word embeddings.

Essentially, one can observe the co-occurrence matrix as a set of
feature vectors discussed earlier. What is listed below (dimension
reduction and weighting) can (and in some cases must) be applied
to feature vectors, too.

41/60

Word Embedding and Dimension Reduction (contd.)

Once you have a co-occurrence matrix, you can use a dimensionality
reduction method to reduce the size of the raw n-dimensional word
vectors, e.g., from n = 10, 000, 000 to m = 1000.

Several dimension reduction methods are available:

* Heuristics–by intuition or math: select one of many correlated
features, etc.

* Distance Preserving Methods – using normed-space definitions:

* Singular Value Decomposition (SVD) for `1 and `2 spaces;

* Principle Component Analysis;

* Random Projections using projection matrices of N (0, 1)
for `2 and C(0, 1) for `1;

* etc..

42/60

Word Embedding and Dimension Reduction (contd.)

* Hashing techniques ...

* Application-oriented Optimization Techniques: an optimization
of a domain-specific function is solved, e.g., use the probability
of word sequences (most neural networks):

Word2Vec; GolVe; Directional Skip-Gram; . . .

In general, use a layer (usually hidden layer) of neural nets.

Disregarding of the employed technique, the output is a set of
vectors of reduced dimension.

Obviously, instead of word-by-word matrices, one can build matrices
of any type of record-by-feature and pass them to these dimension
reduction methods. E.g. We can use them for reducing the
dimension of feature-vectors we built for semantic role labeling.

43/60

Word Embedding and Dimension Reduction (contd.)

Why dimension reduction? many motivations can be listed ...

Avoiding the curse of dimensionality problem;

Enhancing/Reducing computation time;

Removing noise, correlated/duplicate features;

Increasing the overall discriminatory power of vectors;

. . .

44/60

Word Embedding and Dimension Reduction (contd.)

Some methods merge co-occurence matrix construction and
dimension reduction into one process (QasemiZadeh et al., 2017):

1: Initialize a zero m-dimensional vector ~w
2: for each c co-occurred with w do
3: d ← abs(hash(c) % m)
4: ~wd = ~wd + 1

return ~w

The resulting ~w is a m-dimensional embedding of the word w that
~w represents, c is the co-occurring context word/feature with w , %
is modulo operator, and hash is a hash function that returns an
integer.

QasemiZadeh et al. (2017) state that these vectors, however, must
go through a weighting process.

45/60

A quick detour to Weighting techniques

Apart from dimension reduction, weighting techniques are often
used to remove noise and boost the impact of certain features
according to some criteria.

The most well-known technique applied to document-by-word
models (for text classification, information retrieval applications) is
tf− idf (term frequency – inverse document frequency):

a) Words that appear in all documents (e.g., ‘a’, ‘the’, ‘that’,
‘this’, etc.) are not important.

b) Words that appear frequently in some documents but
infrequently across documents are important.

46/60

A quick detour to Weighting techniques (contd.)

The two ideas above are boiled down into the tf-idf formula:

tf-idf(wij) = wij ∗ log(
N

D
)

• wij is the number of occurrences of word j in the document i ;

• D is the total number of documents in which wj appears, i.e.,
the count of rows in which j component is greater than 0;

• N is a constant: total number of documents (number of rows).

To weight feature matrix with tf-idf means to replace the value of
cells with their respective tf-idf values.

47/60

A quick detour to Weighting techniques (contd.)

Another popular weighting technique is Positive Point-wise Mutual
Information (PPMI). Given a Mp×n model, in which vxy is the y th
component of the xth vector:

ppmi(vxy) = max(0, log
vxy ×

∑p
i=1

∑n
j=1 vij∑p

i=1 viy ×
∑n

j=1 vxj
(1)

* Mp×n means that we have a matrix with p rows and n columns
(in our convention, p is the number of records and n is the number
of features).

The list of weighting methods is long: Mutual Information, Odds
Ratio, Simple Probabilities, etc.

NOTE: Scaling and Weighting go hand in hand!

48/60

Embeddings as Input Features to Neural Nets

Let’s get back to neural-network based methods . . .

Modern neural net models expect embeddings as their input.

For instance, you can use the model from (He et al., 2018) for joint
identification. To use this system:

+ Produce a predicate-specific word representation xi for each
word wi , where i is the position of word in the input sequence;

+ To do so, word representation xi is the concatenation of several
types of features, represented by low-dimensional vectors
(embedding):

49/60

Embeddings as Input Features to Neural Nets (contd.)

- predicate specific indicator embedding ie,

- character-level embedding ce,

- randomly-initialized word embedding re,

- pre-trained word embedding pe,

- randomly-initialized lemma embedding le,

- randomly initialized POS-tag embedding pos, and

- randomly-initialized embedding for dependency relation to
head de.

Finally, xi is the concatenation of x iei , x
ce
i , x

re
i , x

pe
i , x lei , x

pos
i ,

and xdei .

See also resources from their earlier work here:
https://github.com/luheng/deep_srl.

https://github.com/luheng/deep_srl

50/60

Embeddings as Input Features to Neural Nets (contd.)

Figure 1: A state-of-the-art NN-based SRL (He et al., 2018).

51/60

Joint Inference

So far, we modelled semantic role labeling as Identification followed
by a number of independent Classifications:

In the identification step: Find all the candidates for a given target
verb (e.g., let’s assume identification gives us C1, C2, and C3).

In the classification step, we must label each of the candidates with
a class label, e.g., to label C1, C2, and C3 as ARG0, ARG1, ARG2,
ARG-M, etc.

So far, in our small examples, we classified C1 independently of the
label for C2, and C3; C2, independently of C1, C3 and so on.

This is not very clever for obvious reasons: these decisions are highly
dependant on each other, e.g., only one of C1, C2, and C3 can be
ARG0.

52/60

Joint Inference (contd.)

How to model dependence of classification tasks? There are
numerous ways.

As suggested by Palmer et al. (2010), one can

A) classify each candidate independently and assign them a ranked
listed of class labels (e.g., based on probabilities given by our
naive method);

B) once these classifications for all the candidates are done,
choose among the possible answers the best one, i.e., a
combination that optimizes some formula.

Note that as a result of the method above, not always the best
answer/class (e.g., most probable class) for a candidate is chosen.

53/60

Joint Inference (contd.)
Palmer et al. (2010) list solutions which are proposed by different
techniques/frameworks:

* Reranking (a combination of class labels which gives the overall
highest probability – uses smoothinh – back-off)

* Using a Viterbi search, Hidden Markov Models (very similar to
Reranking technique, use probabilities);

* Integer Linear Programming (ILP)

Dynamic Programming is the major common theme between these
methods (such as used also in the Travelling salesman problem
algorithm, or the Bellman–Held–Karp algorithm).

Divide the problem into sub-problems often in a recursive manner;

Solve the sub-problems;

54/60

Joint Inference (contd.)
Keep track of the sub-solutions and their combinations;

Find the overall solution that gives the most desirable result
according to some criteria.

NB: In many cases, finding the solution for one sub-problem
depends on finding the solution for another sub-problem.

In some methods, we simply assume that we know the solution for a
sub-problem and based on this assumption we solve the remaining
problems.

For example, given arguments a1 . . . an for a target verb, we can
assume that the class labels of ai s are input features for aj (i 6= j).

Initially, we do not know what are the class labels for a1 . . . an, but
instead we assume that they are know.

55/60

Joint Inference (contd.)

We solve the problem based on all possible assumptions and their
respective solutions and pick one that yields the best outcome
according to some criteria (e.g., the overall likelihood).

E.g., the pseudocode of the Viterbi algorithms.

56/60

Evaluation

Central to Identification: Find the number of correctly identified
arguments.

Central to classification: Find the number of correctly identified
labels.

Using the absolute numbers as a measure may not make sense;
instead we a trad-off between precision (the amount of answers in
the system’s output that are correct) and recall (the portion of all
the expected correct answers in the system output).

57/60

Evaluation (contd.)

We report the harmonic mean of precision P and recall R (known as
F-Score) as a figure of merit:

F = 2× P × R

P + R

or, in general

Fβ = (1 + β2)× P × R

β2 × P + R

where β is a constant, e.g., 0.7 to put more emphasis on precision
or recall.

58/60

Evaluation (contd.)

For identification sub-task, there are several reports of relaxing the
exact match criteria.

Palmer et al. (2010) suggest that apart for argument identification
and classification, the evaluation framework can be extended to
account for predicate identification and classification (to assign
sense category labels to predicates – word sense disambiguation).

59/60

Bibliography

Bird, S., Klein, E., and Loper, E. (2009). Natural Language Processing with
Python. O’Reilly Media, Inc., 1st edition.

Gildea, D. and Jurafsky, D. (2002). Automatic labeling of semantic roles.
Comput. Linguist., 28(3):245–288.

He, S., Li, Z., Zhao, H., and Bai, H. (2018). Syntax for semantic role labeling,
to be, or not to be. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages
2061–2071, Melbourne, Australia. Association for Computational Linguistics.

Palmer, M., Gildea, D., and Xue, N. (2010). Semantic Role Labeling. Synthesis
Lectures on Human Language Technologies. Morgan & Claypool Publishers.

QasemiZadeh, B., Kallmeyer, L., and Passban, P. (2017). Sketching word
vectors through hashing. CoRR, abs/1705.04253.

60/60

Bibliography (contd.)

Xue, N. and Palmer, M. (2004). Calibrating features for semantic role labeling.
In Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing.

