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Chapter 2

Distributional Semantics and
Vector Space Models

Distributional approaches to semantics interpret the meanings of linguistic entities by
investigating their distributional similarities in corpora. These empiricist corpus-based
methods are often explained using Harris’s (1954) distributional hypothesis. A vector
space is an algebraic structure that can be employed to represent such distributional simil-
arities. This representation of the distributional properties of linguistic entities generates
mathematically well-defined models known as vector space models of semantics. In a
vector space model, a distance formula measures semantic similarities between entities.

This chapter provides an overview of the distributional approaches to semantics. Sec-
tion 2.1 provides a brief overview of distributional semantic models and the underlying
distributional hypothesis. Section 2.2 introduces vector space models and provides math-
ematical preliminaries. The key processes for the discovery of meaning—that is, the steps
from the construction of a vector space model to similarity measurements—are described
in Section 2.3. In Section 2.4, the discussions are bound to the statistical learning theory.
Finally, Section 2.5 concludes this chapter.
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2.1. Distributional Semantics: Introduction 23

2.1 Distributional Semantics: Introduction

In order to provide a solution to the problems require a minimum level of text understand-
ing, distributional semantics is a term that is often used to characterise a set of methods
that rely on similarity-based reasoning frameworks. Distributional semantics embraces
a number of approaches that employ similarity-based reasoning in an attempt to provide
solutions to problems that require a minimum level of text understanding. Disregarding
of the type of task and the way similarity-based reasoning is implemented, these methods
aim to capture meanings of linguistic entities (e.g., words and phrases) from their usage
in corpora. In distributional semantic models, therefore, meaning is a function of the
distribution of linguistic entities in a given corpus.

Distributional semantics is motivated by the foundation of structural linguistics and
the distributional hypothesis. The distributional hypothesis, which is often attributed
to Harris (1954), presumes a correlation between distributional similarities of linguistic
structures and their function in language (e.g., their syntactic role, meanings, and so on).
Accordingly, distributional semantic methods suggest that the meanings of linguistic en-
tities are established by the context in which these linguistic entities appear and their
relationship to one another. For example, these methods suggest that the way words are
distributed in text and co-occur with other linguistic expressions determines their mean-
ing. Consequently, distributional semantics can be viewed as a statistical investigation
of the co-occurrences of linguistic entities to capture their semantics from corpora and
linguistic data.

Distributional semantics thus provides us with an empiricist and quantitative model
of meaning in natural languages that is context-dependent. Compared to distributional se-
mantics—on the other side of the spectrum of the methods that study semantics—formal
semantic methods are motivated by a rationalist approach (e.g, see Partee, 2011). In
these methods, the observation of language data is considered to be insufficient for gain-
ing insight into the nature of language.1 Hence, these methods rely on a priori knowledge
that is often expressed in mathematical logic, for example, using the lambda calculus
and predicate logic expressions (Blackburn and Bos, 2005). More importantly, compared
to a distributional model that exploits an inductive similarity-based reasoning, formal se-
mantic techniques rely on deductive inference.2 Formal semantic models provide compel-
ling tools and interesting model-theoretic methods to distil meaning from text. However,
these methods can be used only after text is converted into logical expressions and a priori
model of knowledge domain exists, which are a barrier to their use.

Table 2.1 lists several hypotheses that are embraced by the term distributional se-
mantics. Despite the fact distributional semantics correlates differences in the meanings

1Put simply, rationalist approach sees the language as an innate object, an inherited capability (for a
concise comparison see Manning and Schütze, 1999, chap. 1). In contemporary literature, these methods
often attributed to Noam Chomsky, who collaborated with Harris as a doctoral student. Contemplating on
this matter—although, out of the context of this thesis—will lead to questions such as can we think without
language?, or do we think independently of language?

2As stated by Kamp (2002), although these methods are often studied by different communities, they
can act as complementary tools for treating different aspects of the meanings in language and, thus, the
problem of machine’s understating of natural languages.
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of linguistic entities to the differences in their distributional properties, it does not specify
the variety of distributional information that should be taken into account. Moreover, the
general idea of distributional semantics does not specify the type of meaning connotation
that is attached to distributional differences. In order to establish a model that ties dis-
tributional similarity to meaning, therefore, two basic questions must be answered (see
Sahlgren, 2006, chap. 3; Lenci, 2008; Baroni and Evert, 2009; Turney and Pantel, 2010):

• Which distributional properties of entities should be taken into account?
• How should different kinds of distributional properties be interpreted?

Different choices of distributional properties and their interpretation correspond to dif-
ferent kinds of models that capture different types of semantic similarities. Finding the
appropriate answers for the above questions in a number of semantic computing tasks has
formed a major empirical research theme known as distributional semantics.

2.1.1 Why Does Distributional Semantics Work?
In order to answer the question why distributional semantics works, I would like to begin
with structuralism, an intellectual movement in the 1950s.1 The essence of structural-
ism is to interpret human culture as a system of interconnected signs within a framework
known as semiotics (see Chandler, 2007, for an introduction to the key concepts of semiot-
ics). It was, perhaps, under the influence of the structuralism movement that Harris made
his distributional structure proposal in order to justify the use of statistical techniques for
natural language processing.2 Particularly, Harris (1954) stated that

the meaning of entities, and the meaning of grammatical relations among
them, is related to the restriction of combinations of these entities relative to
other entities.

With a mathematical mindset, Harris elegantly restored the ideas dating back to lin-
guists such as Ferdinand de Saussure (1857-1913). In this school of thought (i.e., struc-
turalism), language is identified as an environment of interconnected elements and as a
functional system. In simple terms, the elements of language are defined at different levels
of abstraction and granularity and connected to each other through various relations. For
instance, one may abstract language at morphological and phonemic levels, where words,
morphemes, and phonemes can be considered as the building elements of language. The
proposed relative perception in structuralism, then, allows elements of language to be
identified by their relations to each other and not by their perceivable specification.

Structuralists apply the same fundamentals as stated above to lexical semantics. Lex-
ical semantics is the study of the meaning of lexical units (see Paradis, 2012). According

1Readers, who wish to contemplate the (paradoxical) question asked here, are also invited to seek for
answers in light of the art of science as explained by Dunbar (1996).

2For example, see reports from the transformations and discourse analysis project (http://www.
cs.nyu.edu/cs/projects/lsp/pubs/tdap.html), which includes the development of the first Eng-
lish parsing program. See also Section 1.3 of the first chapter of this thesis.

http://www.cs.nyu.edu/cs/projects/lsp/pubs/tdap.html
http://www.cs.nyu.edu/cs/projects/lsp/pubs/tdap.html
http://atmykitchen.info/phd/thesis/chapter-1.pdf#section.1.3
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Reference Articulation

Harris (1954) difference of meaning correlates with difference of distribution

Firth (1957) you shall know a word by the company it keeps

Rubenstein and
Goodenough (1965)

words which are similar in meaning occur in similar contexts

Cruse (1986) the semantic properties of a lexical item are fully reflected in appro-
priate aspects of the relations it contracts with actual and potential
contexts

Miller and Charles
(1991, cited in
(Charles, 2000))

the semantic similarity of two words is a critical function of their
interchangeability, without a loss of plausibility

Morris and Hirst
(1991)

word meanings do not exist in isolation. Each word must be inter-
preted in its context

Schütze and Pedersen
(1995)

words with similar meanings will occur with similar neighbours if
enough text material is available

Hanks (1996) the semantics of a verb are determined by the totality of its com-
plementation patterns

Lund and Burgess
(1996)

word meanings as a function of keeping track of how words are
used in context

Landauer and Dumais
(1997)

a representation that captures much of how words are used in nat-
ural context will capture much of what we mean by meaning

Lin (1997) the similarity between A and B, sim(A, B), is a function of their
commonality and differences

Lin and Pantel (2001) if two (dependency) paths tend to occur in similar contexts, the
meanings of the paths tend to be similar

Pantel (2005) words that occur in the same contexts tend to have similar meanings

Sahlgren (2006) words with similar distributional properties have similar semantic
properties

Kilgarriff (2006) word senses are abstractions from the data

Lenci (2008) the degree of semantic similarity between two linguistic expres-
sions A and B is a function of the similarity of the linguistic con-
texts in which A and B can appear

Sinclair et al. (2004,
cited in (Stubbs,
2009))

there is a relation “between statistically defined units of lexis and
postulated units of meaning”

Table 2.1: Various articulations of the distributional hypothesis
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a wise man loved

sensible woman thought

boy played

laughed

Figure 2.1: An illustration of syntagmatic and paradigmatic relations between words: the dotted
lines show paradigmatic relations while solid lines represent syntagmatic relations.

to structuralists, the meanings of lexical units (e.g., words) are not substantial and self-
subsisting, but a function of relations between them. Structuralists distinguish two types
of relations between words: syntagmatic and paradigmatic. Furthermore, they assume
that it is harmonious combinations of these paradigmatic and syntagmatic relations that
convey meaning. Given this perspective, distributional semantic methods that model the
meaning of lexical units identify significant patterns in this system of interconnected syn-
tagmatic and paradigmatic relationships.

There is a syntagmatic relation between two words if they co-occur more frequently
than expected by chance and if they have different grammatical roles in the sentences
in which they occur. For instance, a semantic relation in the form of selectional restric-
tions between a verb and its arguments—such as the relation between love and man in
the sentence a wise man loved—is an example of a syntagmatic relation. In contrast, the
relationship between two words is paradigmatic if they can substitute one another in a
sentence without affecting the grammatical acceptability of the sentence. For instance,
for the given sentences a wise man loved and a sensible woman thought, the pair of words
man and woman, sensible and wise, as well as loved and thought have a paradigmatic
relationship. Paradigmatic relations may be contrastive associations, in which a group
of words might constitute a paradigm. Synonymy and antonymy are examples of such
paradigmatic relations. Figure 2.1 provides an illustration of syntagmatic and paradig-
matic relations.

As stated by Lenci (2008) and Sahlgren (2008), a distributional semantic model that
counts the co-occurrence of words captures a syntagmatic relationship between them. In
this category of models, the co-occurring words in a window of text—such as a verse of
a sentence, a sentence, a paragraph, etc.—define the context in which the relationship,
thus the meaning, of words are induced. Models that extract multi-word expressions or
those that specify syntactic or thematic relations between words are familiar examples in
this category of distributional semantic models. In these models, the size of the region in
which the co-occurrence frequencies are collected is an essential context parameter to be
decided.

In contrast, if a distributional model counts the frequency of shared neighbours between
words, then it captures a paradigmatic relation. In this category of models, words—or,
in general linguistic entities—that appear surrounding a target word in text units such as
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a window of text, sentence, and so on, define the context in which the meaning/relation-
ship of these entities are induced. Models that detect synonymy relations or those that
associate words to ‘semantic categories’—for example, the proposed co-hyponymy iden-
tification task as well as the named entity recognition task that organises proper nouns
into categories of persons, organisations, etc.—are familiar examples of these models. In
this category of models, in addition to the size of text unit in which the co-occurrences
are counted, the position of target entities (e.g., words) in relation to the context elements
and the direction in which the neighbourhood extends are additional parameters that must
be decided.

Let us now return to the question asked in the beginning: why do distributional se-
mantic methods work? As described above, one of the major outcomes of conceptualising
language as a functional system is that it can be studied empirically using the scientific
method. As such, the question stated above is the point in which one of the limits of the
scientific method is met. To understand this limitation, one must carefully distinguish
between the three elements of fact (or, observation), hypothesis, and theory in the sci-
entific method. Facts are inherently true;1 in distributional approaches, they are equivalent
to the observations made about linguistic phenomena that are modelled.2 Since it is im-
possible to collect everything that language embraces,3 conclusions are inevitably based
on a number of selected observations. A hypothesis is an educated assumption. This
assumption is made before designing experiments and collecting facts. If a hypothesis
holds against a large number of observations, then the hypothesis is usually formulated as
a theory. The induced theory is then employed to justify answers to a range of questions.

However, a theory can be rejected if new observations suggest this. Some relevant and
unseen observations (or, their characteristics) that are important in the process of making
a decision about the truthfulness of a hypothesis can be overlooked;4 in turn, this can
result in controversy.5 Using the scientific method to model language and linguistic phe-
nomena is certainly controversial. For the assessment of distributional hypotheses, given
the complexity of natural language as well as its infinite and generative nature, simpli-
fying characteristics of observations and experiments are inevitable. With this prelude,
I suggest that, in fact, there is no definite answer to the question asked earlier: why do
distributional semantic methods work?6

The first answer that seems plausible is that distributional semantics works because
the underlying theoretical framework (i.e., usually the distributional hypothesis) is sound
and effective. As stated above, the success of distributional semantics applied to a task
depends on a number of parameters, most importantly on the appropriate identification

1Although very interesting, let us skip questions such as what is truth? in their philosophical sense (e.g.,
as discussed by Russell, 2014, chap. 3 and 4).

2Note that a number of prominent linguist object this statement.
3Since observations about most (if not all) linguistic phenomena are innumerable and hence it is im-

possible to record everything that is related to them.
4Or, observations can be theory-laden.
5There are well-known examples of this situation in the history of science, such as the Mendel–Fisher

controversy (see Fisher, 1936) as well as the Duhem–Quine problem (see Stanford, 2013) to name a few.
6The short argument given here is discussed (fairly) by Eddington (2008) from a broader perspective

that analyses the relationship between linguistics and the scientific method.
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of linguistic elements and their relations within the problem context. As a result, if the
success stories of distributional semantics are not sufficient to prove the effectiveness of
the distributional hypothesis, they may also be insufficient for rejecting it.1 Situating this
discussion in the broader context that is given by Harris’ sublanguages idea—as briefly
mentioned in Chapter 1—can perhaps open new ways to discuss the question why do
distributional semantic methods work?, asked here.2

By adopting an empiricist approach, the large number of experiments that confirm
the ability of distributional methods (to address a range of tasks that require a level of
language understanding) can be employed to verify the veracity of the distributional hy-
pothesis.3 Distributional methods have been successfully applied to information retrieval
(e.g., Deerwester et al., 1990), semantic memory (e.g., Lund and Burgess, 1996), and
word meaning disambiguation (e.g., Rapp, 2003), among others. These experiments have
shown that contextual similarities can be employed to propose a reliable semantic model.
However, distributional semantic models come with their own limitations and are still
developing. The inability to handle traditional semantic notions such as negation, scope,
quantification, and compositionality are examples of the distributional semantics limita-
tions. Indeed, a number of these limitations arise from the constraints of similarity-based
reasoning. Currently, these limitations are active research topics. Here, it is worth point-
ing out that the distributional hypothesis has not been employed to only justify distribu-
tional semantic methods. For example, a large amount of research in speech recognition
and language modelling is based on the promise of the distributional hypothesis—that is,
systemic functional perspective on language (even if it is not mentioned explicitly).

Distributional semantics is often praised for the practical method that it offers for
constructing semantic models—that is, building frequency profiles from corpora. De-
veloping a distributional model, therefore, requires minimal supervision; explicit human
judgements are not usually required, and no rules need to be handcrafted. Consequently,
compared to formal computational semantics, the development and maintenance of a
distributional-based model are less time-consuming. More importantly, distributional se-
mantic models equip us with two unique capabilities. As emphasised by Baroni (2013),
distributional semantic models offer a systematic method to approximate degrees of simil-
arity. In this framework, in contrast to formal models, semantic similarity is a quantitative
prediction (e.g., a distance measure in a vector space). Such quantitative measures allow
approximate degrees of similarity to be defined explicitly. This being the case, distribu-
tional models of semantics are capable of expressing semantic relatedness in a continuum
of shades of grey instead of black or white (Baroni, 2013).

Secondly, distributional semantic methods permit meaning to be captured by arbitrary,

1Here, the notion of success is a source of controversy and ambiguity. While the discussion can
be extended by describing the meaning of success, I assume success is defined by a tangible figure of
merit—whether it is a simple quantitative measure used to evaluate an algorithm (e.g., recall in informa-
tion retrieval tasks), or complex Turing test-like performance measures in more sophisticated tasks involved
man-machine conversation. In fact, the definition of this performance measure (i.e., the definition of suc-
cess in the given context) is an overlooked topic and can lead to flaws in the assessment of a hypothesis or
unrealistic expectations or constitutions from observations in an experiment.

2Perhaps, by formulating and generalising the outcome of experiments more carefully.
3Yet, we do not like to curse one of a few tools that is available to us for analysing natural language.

http://atmykitchen.info/phd/thesis/chapter-1.pdf#chapter.1
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heterogeneous, large-scale sets of symbols: from words in a lexicon to visual objects and
scenes in images or a combination of these. For example, in order to improve a similarity
measurement between words, Bruni et al. (2012) employ co-occurrence counts of words
with a set of low-level image-based context elements. This is an exciting area of research
considering the advances in wearable computing and the increasing availability of sensory
information. As explained later, various techniques, such as random projections, enable
distributional models to easily scale as demand requires. Compared to formal semantics,
these properties make distributional semantic models a more desirable companion for the
current paradigm shift in computing from algorithm-centric to data-driven approaches
(e.g., see Zadeh, 2010).

2.1.2 Distributional Semantics and Principles of Interpretation

Distributional profiles and thus distributional semantics can be interpreted in, at least,
two different representation frameworks: the probabilistic and vector space frameworks
(Erk, 2012).1 Distributional information consists of the counts of the co-occurrences of
linguistic elements that can be stored and viewed in a tabular data format. This tabular
data can be analysed either as a contingency table in a probabilistic modelling framework
or in a vector space framework. These representation frameworks interpret and measure
semantic similarity using different mechanisms.

A probabilistic-based model of distributional semantics employs probability theory
and Bayesian mathematics. In this framework, a probabilistic inference indicates se-
mantic similarity. A probabilistic approach associates linguistic entities with probability
distributions based on the contexts that they appear in; it also calculates conditional and
joint probabilities of contexts and elements. Eventually, a parameter estimation technique
signifies semantic similarity. Latent Dirichlet Allocation (LDA) is a well-known example
of a probabilistic approach to distributional semantics (Blei et al., 2003) .

On the other hand, vector space models construct a metric space from the given distri-
butional profiles. Points in this metric space represent linguistic elements under consider-
ation; a notion of distance between elements is defined and it indicates similarity between
the elements. A 3-dimensional Euclidean space is probably the most intuitive under-
standing of such metric space. The vector space models thus results in a “geometrical
metaphor” of meaning (Sahlgren, 2006). Landauer and Dumais’s (1997) Latent Semantic
Analysis (LSA) is a well-known example in this category of distributional semantic mod-
els.

Figure 2.2 summarises the discussion in this section. Although probability-based and
vector space-based methods propose different conceptualisations of meaning (i.e., distri-
butional probability vs. distance metrics), in essence, they are the same (e.g., see Turtle
and Croft, 1992, in the information retrieval context). In both methods, meaning is de-
rived from event frequencies presented by distributional profiles. However, throughout

1For instance, information-theoretic framework (e.g., as suggested by Resnik, 1995) and graph-based
methodology (e.g., as employed in Navigli and Ponzetto, 2012) can be added to the list of representation
frameworks for distributional semantic models.
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The Distributional Hypothesis

Distributional Semantic Methods

· · ·Vector Space

Examples

LSA

Distance
(Metric)Linear Algebra

Matrix Factorisation

Probability Space

Examples

LDA

Probability
DistributionProbability Theory

Bayesian Inference

Figure 2.2: A mind map of different representation frameworks that can be employed for the
implementation of a distributional semantic model.

this thesis, vector space models and distance metrics are employed to model semantic
similarities. Following many researchers such as Widdows (2004) and Sahlgren (2006), it
can be argued that the vector space models and the geometrical interpretation of the mean-
ing are more intuitive than the probabilistic framework—for example, as put by Widdows
(2004), seeing is believing. However, it is worth mentioning that these representation
frameworks must be seen as complementary—such as the comparison of generative and
discriminative classifiers (e.g., see the arguments in Nallapati, 2004, given in the context
of information retrieval).

Last but not least, while distributional models of semantics can be presented using
representation frameworks other than a vector space, a vector space can also represent
semantic models other than distributional. For instance, Riordan and Jones (2011) use a
feature-based model of semantics that is represented by a vector space. While distribu-
tional models are induced from statistical regularities of entities that appear in particular
contexts (c.f., Section 2.2.2 for further details), feature-based models employ a rationalist
approach and a set of descriptive features to reflect the meanings. As a result, although
feature-based models of semantics can be presented by vector spaces, they are derived
from an entirely different perspective on meaning. Therefore, not all the vector spaces
necessarily implement distributional models of semantics.

The next section reviews basic mathematical definitions and notations that are used in
vector space models.

2.2 Vector Space Models

2.2.1 Vector Space: Mathematical Preliminaries

In mathematics, an algebraic structure is a set together with one or more operations in it.
Vector space is an algebraic structure that consists of a non-empty set and two binary op-
erations that satisfy certain axioms. A vector space extends an algebraic structure called
field. Informally, a field is a set of elements called scalars, or numbers, in addition to
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two binary operations, and certain axioms that implement four familiar arithmetic opera-
tions of addition, multiplication, subtraction, and division over the set. The field of real
numbers (R) and the field of complex numbers (C) are well-known examples.

A vector space can be denoted by a tuple(
V, F,+, ·

)
. (2.1)

The set V , whose members are called vectors, is defined over a field F of scalars. For
example, vectors can simply be a subset of a field such as complex numbers (F = C,
V ⊆ C) or real numbers (F = R, V ⊆ R); or they can be an ordered sequence of scalars
of a field such as F = R, V ⊆ Rn. The two binary operations are called vector addition
(V×V 7→ V : (~v, ~u) 7→ ~v+~u) and vector multiplication by scalars (F×V 7→ V : (α,~v) 7→ α·~v
). The system

(
V, F,+, ·

)
is a vector space if, and only if, it satisfies the following axioms:

• The binary operation addition + forms an Abelian group over V . This implies the
requirements of Closure, Associativity, and Commutativity for the binary operation
+ over V , as well as the existence of Identity and Inverse elements in V .

• For the binary operation multiplication by scalars ·, ∀α ∈ F and ~v ∈ V , α ·~v ∈ V . In
addition, if α, β ∈ F and ~u,~v ∈ V , then α·(~u+~v) = α·~u+α·~v and (α+β)·~v = α·~v+β·~v.

Given a vector space V , if ~v1,~v2, · · · ,~vn are any vectors in V , and α1, α2, · · · , αn are
any set of scalars in F, then

α1~v1 + α2~v2 + · · · + αn~vn (2.2)

is called a linear combination of the vectors. From the axioms, it can be shown that a
linear combination of vectors in V must belong to V . A set that contains all possible
linear combinations of vectors ~v1,~v2, · · · ,~vn is called the span of ~v1,~v2, · · · ,~vn.

A set of vectors ~v1,~v2, · · · ,~vn from a vector space V are called linearly independent if

α1~v1 + α2~v2 + · · · + αn~vn = 0 ⇐⇒ ∀i, αi = 0. (2.3)

If B = {~b1, ~b2, · · · , ~bn} is a set of linearly independent vectors in V , and B spans V , then B is
called a basis of V . Consequently, vectors ~v ∈ V can be presented as a linear combination
of the vectors ~bi ∈ B:

~v = α1~b1 + α2~b2 + · · · + αn~bn. (2.4)

It can be proved that there exists at least one basis B for V . The cardinality of B is
defined as the dimension of V . By limiting the focus to finite-dimensional vector spaces,
the dimension of V is thus the number of vectors in B1. The scalars α1, α2, · · · , αn in
Equation 2.4 are called the coordinates of the vector ~v in that basis. It can be proved that
the representation of a vector ~v in a basis B is unique. The coordinates of elements of
Vn in a basis, subsequently, can be represented as a row or column matrix. Therefore,
a collection of m vectors in Vn can be denoted by a matrix Mm×n, where the rows of M
represent the vectors.

1From now on, an n-dimensional vector space is denoted by Vn.
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In a vector space, additional structures are defined to quantify relationships between
vectors. The fundamental concepts of length of a vector as well as distance and angle
between vectors are the familiar geometrical interpretation of these structures.

A norm is a unary operation that associates a vector in V with a scalar in F (i.e.,
V 7→ F : (~v) 7→ ‖~v‖) and satisfies the following axioms:

• Positivity, that is, ∀~v ∈ V : ‖~v‖ ≥ 0;
• Definiteness, that is, ‖~v‖ = 0 ⇐⇒ ~v = 0;
• Homogeneity, that is, ∀~v ∈ V and ∀α ∈ F : ‖α~v‖ = |α|‖~v‖;
• Triangle inequality, that is, ∀~u,~v ∈ V : ‖~u + ~v‖ ≤ ‖~u‖ + ‖~v‖.

A vector space that is endowed with a norm is called a normed vector space. The norm
of a vector ~v ∈ V (i.e., ‖~v‖) is geometrically interpreted as the length of ~v. The Euclidean
norm—which is also called the `2 norm—over the field of real numbers (i.e., F = R) is
the most familiar structure that satisfies the axioms listed above:

‖~v‖2 =

√
Σn

i=1v2
i . (2.5)

Given the norm’s definition, the distance d(~u,~v) between the two vectors ~u,~v ∈ V is
given by

d(~u,~v) = ‖~u − ~v‖. (2.6)

Given the Euclidean norm definition in Equation 2.5, respectively, the Euclidean dis-
tance—which is also called the `2 distance—between the two vectors ~v and ~u in Vn

overF = R is given by

d2(~u,~v) = ‖~u − ~v‖2 =

√
Σn

i=1(ui − vi)2. (2.7)

In a similar fashion, an inner product space is a vector space that is equipped with an
inner product structure. An inner product 〈, 〉 is a binary operation that associates a pair
of vectors in V to a scalar in F (V × V 7→ F : (~u,~v) 7→ 〈~u,~v〉) and satisfies the following
axioms:

• Positivity, that is, ∀~v ∈ V : 〈~u,~v〉 ≥ 0;
• Definiteness, that is, 〈~v,~v〉 = 0 ⇐⇒ ~v = 0;
• Additivity for first element, that is, ∀~u,~v, ~w ∈ V: 〈~u + ~w,~v〉 = 〈~u,~v〉 + 〈~w,~v〉;
• Homogeneity for first element, that is, ∀~u,~v ∈ V and ∀α ∈ F : 〈α~u,~v〉 = α〈~u,~v〉;
• Conjugate interchange, that is, ∀~u,~v ∈ V : 〈~u,~v〉 = 〈~v, ~u〉.

For F = R and the two vectors ~u = (u1, u2, · · · , un) and ~v = (v1, v2, · · · , vn), a familiar
structure that satisfied the above axioms is given using the standard multiplication of real
numbers:

〈~u,~v〉 = ~u · ~v = u1v1 + · · · + unvn =

n∑
i=1

uivi. (2.8)
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A geometric interpretation of the inner product and the norm gives the angle between the
two vectors. In F = R, the angle between the two vectors ~u and ~v—that is θ—is defined
by the cosine inverse function:

θ = arccos
( 〈~u,~v〉
‖~u‖ · ‖~v‖

)
. (2.9)

It is proved that −1 ≤ 〈~u,~v〉
‖~u‖·‖~v‖ ≤ 1 and thus θ is always valid—that is, θ ∈ [0, π].

It is said that the two vectors ~u,~v ∈ V are orthogonal if 〈~u,~v〉 = 0. A basis of Vn is
an orthogonal basis if the vectors in the basis are mutually orthogonal. Moreover, if the
norm of all the vectors in an orthogonal basis is equal to the unit length, then the basis is
called an orthonormal basis. An orthonormal basis of Vn is called the standard basis (i.e.,
S = {~s1, · · · , ~sn}) of Vn if each vector si ∈ S has only one non-zero entry. It is common to
represent Vn by the coordinates of vectors in S , which is proven to be unique.

The given definition for vector space is inherently abstract and can be extended to
a fairly arbitrary set of objects that forms a field. In addition, there are a number of
definitions for the binary operations of addition, multiplication, and norm that satisfy the
proposed axioms in vector spaces. Consequently, alternative structures for comparing
vectors can be defined and used by changing the aforementioned components. In the
context of distributional semantics, however, the employed vector space structures are
usually limited to the subspaces of a finite real space, particularly, a finite Euclidean
space En.

A subset W ⊂ V of a vector space is a subspace of V if

• for each two vectors ~w1 and ~w2 in W, then ~w1 + ~w2 ∈ W;
• for any scalar α ∈ F and ~w ∈ W, then α · ~w ∈ W.

Given a finite positive integer n, the set of all ordered n-tuples ~u = (u1, u2, . . . , un) of
real numbers and the binary operations

(~u + ~v)i := ui + vi (2.10)

and
α · ~u = (αu1, αu2, . . . , αun) (2.11)

that are based on the real numbers’ addition and multiplication form a finite real vector
space, shown by Rn. An Rn that is equipped with a Euclidean norm (see Equation 2.5),
or by analogy with an inner product (Equation 2.8), is called a finite Euclidean space. As
it will be discussed in Section 2.3.4, to compute similarities, Rn can be endowed with a
norm structure other than the Euclidean norm.1

The vector space-based approaches to distributional semantics use the key concepts
introduced in this section to model the meanings of linguistic entities. Given n context
elements, each element ~si of the standard basis of a vector space Vn is employed to express
an ith context element. Given Vn, in order to analyse the meaning of a linguistic entity, it
is represented by a vector ~v as a linear combination of ~si and scalars αi, similar to what

1An elaboration of the discussed topics in this section can be found in William J. Gilbert (2004).
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is shown in Equation 2.4. In this linear combination, the value of αi is acquired from the
frequency of the co-occurrences of the linguistic entity that ~v represents and the context
element that ~si represents. As a result, the coordinates of ~v show the correlations between
the linguistic entity that ~v represents and the employed context elements in the model (see
Figure 2.3 as an example).

In this framework, a collection of m linguistic entities whose meaning is being ana-
lysed using n context elements builds a subspace of an n-dimensional vector space con-
sisting of m vectors. To compute similarities between the linguistic entities, this vector
space is endowed by a structure such as inner product or norm. Subsequently, the angles
or distances between vectors indicate the similarities of the linguistic entities that they
represent. As stated earlier, often real numbers denote the magnitudes of the correlations
between the linguistic entities and the context Respectively, the coordinates of vectors
can be denoted by a matrix Mm×n of real numbers. Each entry of M, thus, represents the
intensity of the relationship between a context element and an entity.

In order to distil the meanings of linguistic entities, a vector space will be the subject
of several processes. Before introducing these processes in Section 2.3, the discussion
continues with an elaboration of choosing the context elements in vector space models of
distributional semantics.

2.2.2 Vector Space Models in Distributional Semantics
In natural language processing, vector space models (VSMs) are often identified by the
model proposed in Salton et al. (1975). In the context of information retrieval (IR), Salton
et al. employed a VSM to measure similarity between documents and queries. In the
proposed model, natural language text documents, as well as natural language queries, are
represented as vectors in a high-dimensional vector space. In this vector space, vectors
that are close to each other are assumed to be semantically similar, while vectors that are
far apart are semantically distant.

Given n distinct terms t and a number of documents d, in Salton et al.’s (1975) model,
each document di is represented by an n-dimensional real vector

~di = (wi1,wi2...,win)

where wi j is a numeric value that associates the term t j, for 1 < j < n, to the document
di. The numeric association between the term t j and the document di may correspond to a
weighted value, such as the frequency of terms in documents. Alternatively, it can be an
un-weighted value restricted to 0 and 1. For a collection of m documents, a document-by-
term matrix Mm×n denotes the constructed vector space.

A document-by-term VSM can be equipped by the inner product structure to quantify
similarities between documents. Therefore, the similarity between the two documents
that are represented by vectors di and d j can be given by their cosine similarity:

sim(di, d j) =
〈~di, ~d j〉

‖~di‖‖~d j‖
=

∑n
k=1 wikw jk√∑n

k=1 w2
ik

. (2.12)
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Apple is a delicious fruit.D1

Orange is a colour.D2

Orange is delicious.D3
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Figure 2.3: The VSM proposed by Salton et al. (1975): (b) shows a vector space that is constructed
from the given document collection in (a). Words fruit, delicious, and colour are chosen as the
context elements/terms and represented by the standard basis of the VSM. The vectors’ elements
denote the frequency of the terms in their corresponding documents. As is shown in (b), in this
VSM, D3 is more similar to D1 than D2 (α < β). The given input query Q = f ruit is also
represented by a vector. Q is closer to D1 than to other documents (γ < π

2 ). Figure (c) shows the
document by term matrix denotation of the constructed VSM.

In the above equation, similar to Equation 2.9 in Section 2.2.1, the numerator is the dot
product of the vectors and the denominator is the multiplication of the Euclidean length
of vectors. The genius of the Salton et al. method is that queries, in a retrieval task,
are treated as pseudo-documents and are represented by vectors too. In a vector space
constructed from a document collection C, the most similar documents to a query q (such
as a keyword) are found by computing sim(q, d) for all the documents d ∈ C (Figure 2.3).

The VSM described above implements a hypothesis known as the bag of words. The
BoW hypothesis suggests that the relevance of documents can be assessed by counting
words that appear in the documents, independent of their order or syntactic usage patterns.
Documents with similar vectors in a document-by-term model, therefore, are assumed to
have the same meaning. However, in order to implement a distributional hypothesis other
than BoW, a VSM can be generalised to sets of entities other than documents and sets of
context elements other than words that appear in documents.

Deerwester et al. (1990) showed that similarity between words can be captured by
transposing the document-by-term matrix into a term-by-document matrix.1 The proposed
model by Deerwester et al. (1990), called latent semantic analysis (LSA), hypothesises
that terms that are semantically similar occur in collections of similar documents. In this
term-by-document model, the cosine similarity of vectors, which represent terms, can be
employed to indicate the semantic relatedness between terms. The same model as the LSA
was introduced much earlier by Jones (1972) (cited in Wilks and Tait, 2005); the novelty
of the LSA, however, is the use of singular value decomposition (i.e., a matrix factor-
isation technique) for the arrangement of context elements at a reduced dimensionality
(see Section 2.3.3). As described later in Section 2.3.3, singular value decomposition is a
matrix factorisation technique, which allows irrelevant context elements to be eliminated
from a vector space in order to enhance the similarity measures.

1From now on, the terms vector space, context vectors, and context matrix may be used interchangeably.
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Figure 2.4: A vector space model that is constructed from the document collection given in Fig-
ure 2.3. The three documents D1, D2, and D3 are the context elements. Therefore, the basis of the
vector space represents each of them. The vectors represent words/terms, in which the coordinates
of the vectors indicate the co-occurrence relationships between the words/term and documents.
In the given example, cosine similarities between the vectors suggest that delicious is semantic-
ally more related to fruit than to colour (i.e., α < β in Figure 2.4a). Figure 2.4b shows a matrix
denotation of the constructed term-by-document model.

The term-by-document model can be further generalised by replacing documents with
text of an arbitrary length, such as a word, or window of words of a certain size. For in-
stance, the proposed method in Lund and Burgess (1996) captures the semantic similarity
of words using a word-by-word vector space. The resulting word-by-word model takes
the co-occurrences of words as a measure of similarity. Even lexico-syntactic patterns
can be employed to define context elements. VSMs, thus, can be categorised and studied
according to the type of context element that they employ and the linguistic entities that
they represent (e.g., as suggested by Turney and Pantel, 2010; Baroni et al., 2010). As
discussed, the type of context elements and the linguistic entities in a model is determined
by the model’s underlying hypothesis and intended application.

2.2.3 Types of Models and Employed Context Elements
Distributional semantic models and the employed context elements for their construction
can be categorised and studied from several overlapping perspectives.

First, these models can be categorised by the type of semantic relationship that they
target—that is, whether they characterise syntagmatic or paradigmatic relations between
the linguistic entities in the model (see also Sahlgren, 2006, chap. 7). As discussed earlier,
in Section 2.1.1, the context elements, thus dimensions of a vector space model that cap-
tures a syntagmatic relation between linguistic entities, show the magnitude of the fre-
quency of the linguistic entities that co-occur in text. For instance, models that are used
to measure lexical semantic relatedness (e.g., as employed in Jurgens et al., 2012) must
capture a syntagmatic relation. However, in a model that captures a paradigmatic relation
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between linguistic entities (e.g., a model that discovers the synonym or the hypernym re-
lationship), the context elements show the neighbourhoods that are shared between the
linguistic entities.

As implied in Baroni et al. (2010), distributional semantic models can be also cat-
egorised according to the approach that they employ to distil co-occurrence frequencies.
A distributional method results in a so-called flat or unstructured model if the process
of collecting co-occurrence frequencies in text is coincident with neglecting linguistic
information such as part-of-speech tags or syntactic relations.

To implement a flat model that collects the co-occurrence frequencies of linguistic
entities—that is, to capture a syntagmatic relationship—the only parameter that needs to
be verified is the size of the text region in which the co-occurrence is regarded. Deer-
wester et al.’s (1990) LSA is an example of a flat model that captures syntagmatic rela-
tions between linguistic entities. In LSA, the text region is of the size of logical docu-
ments. Lund and Burgess (1996) present another example of a flat model that captures
a syntagmatic relation between words, however, it uses a narrow text region (i.e., a text
window of n words for n = 10 in the reported experiment). As a rule of thumb, Sahl-
gren (2006, chap. 9) suggests that a wide text region tends to show a better performance
than narrow text region if syntagmatic relations are approximated; inversely, the use of
narrow text regions for collecting co-occurrences of the neighbourhoods that are shared
between linguistic entities has a better performance than using wide text regions when
paradigmatic relations are approximated.

When a flat model collects the co-occurrence frequencies of the neighbourhoods that
are shared between linguistic entities (i.e., to capture a paradigmatic relationship), how-
ever, the direction in which text region are extended is also important. Text regions can
be stretched (a) only to the left side of a linguistic entity to collect the co-occurrences
of the linguistic entity with its preceding words, (b) only to the right side to collect co-
occurrences with the succeeding words or (c) around the linguistic entity (i.e., in both
left and right directions). If text regions are extended around linguistic entities, then the
position of the linguistic entities in the text region (symmetry) is an additional parameters
that can be changed.

The order of words in the text regions can be also important. To capture the word
order information in a model, the appearance of distinct words in distinct positions in text
regions must be distinguished—for example, by appending additional dimensions to the
model. The words’ order information may be also encapsulated implicitly using n-gram
sequences, or using an additional vector structure—for instance, as suggested in Jones and
Mewhort (2007). Section 5.3.2.3 of Chapter 5 will describe the permutation technique and
justify it mathematically, which will be employed later in this thesis. This method is first
suggested by Sahlgren et al. (2008) for the incorporation of word order information in the
vector space models that are built using the random indexing technique.

Curran (2004, chap. 3) distinguishes flat models by the way that they treat logical text
boundaries such as sentence and paragraph boundaries. The width of text regions may
be fixed irrespective of logical text segment boundaries, or it may be restricted by them.
In the first case, text regions can be expanded to two or more logical text segments. Last
but not least, words in flat contexts can be presented in their stemmed/lemmatised form

http://atmykitchen.info/phd/thesis/chapter-5.pdf#subsubsection.5.3.2.3
http://atmykitchen.info/phd/thesis/chapter-5.pdf#chapter.5
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to build stemmed models (as named by Murphy et al., 2012). The reported experimental
results are contradicting with respect to the significance of the inclusion of word order
information as well as lemmatisation in the performance of distributional models (e.g.,
see Bullinaria and Levy, 2012).

Linguistically aware models, which are also called structured models, are the second
category of the models that are proposed in Baroni et al. (2010). In this models, text
regions are first annotated with linguistic information such as part-of-speech tags or syn-
tactic relations. These linguistic annotations may be captured by the model, or it may be
used to filter a number of co-occurrences. Linguistically aware models are used based
on the intuition that linguistic information provides a stronger cue of semantic similarity
than flat models. For instance, a window of words with particular part-of-speech cat-
egories, namely nouns, adjectives, and verbs, form the context proposed in Baroni et al.
(2010). Widdows (2003) and Jonnalagadda et al. (2012) are other examples that employ
part-of-speech tags in order to filter co-occurrences.

Pioneered by Grefenstette (1994), a sub-category of linguistically aware models is
defined by the use of syntactic relations. In its simplest form, pairs of dependency rela-
tions Depr and words in text regions Cw (i.e., (Depr,Cw)) form syntactic contexts. In this
model, the co-occurrence frequencies are induced by observing target words/entities that
are in particular Depr relationships with Cw. Syntactic contexts, however, may correspond
to more complex syntactic paths than that described here. Padó and Lapata (2007) argue
that syntactic structure in general and argument structure in particular are close reflec-
tions of the lexical meanings. Several experiments suggest that syntactic-based models
can outperform flat models (e.g., see Erk and Padó, 2008; Jurgens and Stevens, 2010;
Thater et al., 2010; Séaghdha and Korhonen, 2011; Weeds et al., 2014).

The third group of models, which can be called attribute-value-based models, are
those that collects the co-occurrences of linguistic entities and particular lexico-syntactic
patterns. As mentioned by Baroni et al. (2010), lexico-syntactic patterns are often hand-
crafted and used to capture concept associations, in particular semantic analysis task such
as detecting an entailment relation. For instance, a context may be defined as the presence
of the lexical pattern “X such as Y” between the two entities X and Y in order to indicate
a subordinate relation between them. The main assumption here is that a surface pattern
can be an indication of the presence of semantic relations. An example of this type of
model is suggested by Hartung and Frank (2010).

The types of models that are listed above can be populated by the text kernel methods
that are often used in text classification task. A well-known example is a string ker-
nel (Lodhi et al., 2002). Models that are built using text kernels can be placed in one of
the categories listed above, depending on the type of the employed kernel. For example,
the resulting model from the application of a string kernel is often a flat model. Using a
tree kernel such as the one proposed in Collins and Duffy (2002), however, results in a
structured model. Other types of kernels in applications other than text classification are
also conceivable (e.g., see Plank and Moschitti, 2013; Mehdad et al., 2010).

The methods that are employed for collecting co-occurrences are not restricted to the
above-listed categories. A number of recently employed methods for the construction of
distributional semantic models can be categorised as those that use extra-linguistic context
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elements. As explained earlier in Section 2.1.1, the notion of the context element can be
extended to sets of objects other than text. For example, in Bruni et al. (2012), low-level
visual features enrich a VSM that measures semantic similarities between words (see
also Bruni et al., 2014). Similar extra-linguistic-based models are employed in Chen
et al. (2012); Roller and Schulte im Walde (2013); Silberer et al. (2013). As suggested
in Anderson et al. (2012), recent research results (e.g., Mostow et al., 2011; Mitchell
et al., 2008) further validate the suitability of extra-linguistic-based models for semantic
modelling from the cognitive point of view.

Other trending usage examples of extra-linguistic context elements, although less ex-
citing than the above list, are found in the context of the Web. Openly available know-
ledge bases on the Web are rich sources of extra-linguistic information and have served
an increasing number of distributional models. For instance, the explicit semantic ana-
lysis (ESA) technique builds a term-by-document model with extra-linguistic context ele-
ments that are derived from the topical structure of a knowledge base such as Wikipedia
(Gabrilovich and Markovitch, 2007). Reversely, Angeli and Manning (2014) employ a
distributional model and the structured data in open-domain knowledge bases to enable
common sense reasoning, however, for new and unseen entities. In a similar line of re-
search, Gardner et al. (2014) use similarities in a vector space model to enhance reasoning
over knowledge-bases.

The list presented here is endless. Table 2.2 lists a number of distributional models
and their applications. The type of model and the employed method for collecting co-
occurrences is determined by the underlying hypothesis and the task in hand. A new task
implies a new hypothesis, and a new hypothesis often demands a new method for collect-
ing co-occurrences and thus a new type of model. In short, the construction of flat mod-
els is computationally less expensive. However, flat models are often high-dimensional,
which in return may result in a high computational cost for similarity measurement. Such
VSMs may include uninformative, and sometimes irrelevant, context elements, which can
reduce the performance of the model. The use of linguistic information may prevent the
problems mentioned above, however, at the expense of higher computational costs for
VSM construction. However, the use of linguistic information may introduce a level of
noise that is originated from the use of linguistic analysis tools. If the co-occurrences are
filtered by linguistic information or lexico-syntactic patterns, then a larger amounts of text
data might be required to avoid the sparsity in the constructed models. Depending on the
anticipated application for the constructed model, the use of a structured model may not
necessarily enhance the results (e.g., as reported in Zeng et al., 2014).

2.3 Processes in Vector Space Models

The construction of vector space models of semantics and the task of meaning discovery
involve a set of processes. These processes vary from one application and model type
to another. However, a general pattern of processes can be identified in most of the ap-
plications of VSMs: a three-step pre-process followed by a four-step process (Turney and
Pantel, 2010).
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Reference Model/Type/Application Domain

Salton et al. (1975) document-by-term model, flat
in information retrieval

Deerwester et al. (1990) term-by-document model, flat
in information retrieval

Lund and Burgess (1996) word-by-word model, flat
a text window of 2 words to the left and right of each target word
as a representational model of semantic memory

Lin (1998a) word-by-word model, linguistically aware
words in syntactic relations with target words
in thesaurus construction, automatic detection of similar words

Lin and Pantel (2001) “path”-by-word, linguistically aware
words in syntactic relations with automatically induced lexico-syntactic
patterns (path)
entitites are constrained paths in dependency tree
in unsupervised inference rules discovery

Kanejiya et al. (2003) word-by-word model, linguistically aware
part of speech (PoS) tagged words, blocks of POS tag information around
a target word
in automated essay scoring

Widdows (2003) word-by-word model, lingustically-aware
words surrounding a target word
target words discriminated by PoS tags
in taxonomy extraction

Padó and Lapata (2007) word-by-word model, linguistically aware
pair of words and dependency relations (anchored paths)
in synonym detection, semantic priming, and sense disambiguation

Gabrilovich and
Markovitch (2007)

term-by-document model, extra-linguistic-based

concepts that are derived from the Wikipedia’ articles
in information retrieval, document similarity, and word relatedness

Baroni et al. (2010) concept-by-attribute-value model, attribute-value-based model
lexico-syntactic patterns using PoS tags and dependency structures
in concept description extraction

Jonnalagadda et al. (2010) word-by-word model, lingusitcally-aware
symmetric text window, PoS tags, encoded words’ order
in named entity recognition

Séaghdha and Korhonen
(2011)

word-by-word model, linguistically aware

context elements derived from dependency structure
in lexical substitution ranking

Hartung and Frank (2011) word-by-attribute model, attribute-value-based
adjectives and nouns with context elements that are induced using an LDA
topic model algorithm
in attribute selection for Adjective-Noun

Lops et al. (2013) term-by-meta-document model, extra-linguistic-based
textual metadata derived from web resources, URLs, HTML meta-tags, so-
cial bookmarks
in tag recommender systems

Anderson et al. (2013) word-by-bag-of-visual-words model, extra-linguistic-based
textual models, verbs and textual windows of fixed size, augmented with
image-based features,
to study the correlation between fMRI-based neural patterns and distribu-
tional semantic measures

Table 2.2: Examples of the employed context elements in vector space models of semantics in
different application domains



2.3. Processes in Vector Space Models 41

TokenisationRaw Text Normalisation Annotation Pre-processed Text

Figure 2.5: Pre-processes to vector space construction
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Figure 2.6: From frequency to meaning: a common four-step process flow in vector space models

As shown in Figure 2.5, pre-processing starts with a text segmentation and tokenisa-
tion process in order to detect linguistically well-defined text boundaries such as words
and sentences from an input text collection (see Palmer, 2010). The successive normal-
isation process may organise similar entities or filter some of them. For example, a simple
normalisation process may convert all characters to lowercase, convert words to their lem-
matised form, or remove some of the tokens such as stop words. Finally, an annotation
process augments text units with additional information. For example, PoS tagging and
syntactic parsing are common annotation processes.

Pre-processed data usually undergoes a four-step process that start with the collection
of co-occurrences and the calculation of event frequencies and ends with an interpreta-
tion of the calculated similarity measures (Figure 2.6). In the first step, the frequency of
the co-occurrences of linguistic entities and context elements is calculated, and vectors
that represent linguistic entities are built. Non-compulsory processes of weighting and
dimensionality reduction may follow the construction of context vectors. The process is
finished by a method that measures similarity between the constructed vectors. Although
these steps are listed back-to-back, in practice, they may be combined or skipped, as
discussed in the following sections.

2.3.1 Context Matrix Formation: Collecting Co-Occurrences
Context matrix formation determines numeric associations between linguistic entities and
context elements. In its simplest form, this association is an un-weighted binary value re-
stricted to 0 and 1,1 and it shows the absence or presence of the occurrences of a linguistic
entity with a context element. In a typical term-by-document model, for instance, un-
weighted associations indicate the presence of a term (linguistic entity) in a document
(context element) using value 1. However, the association between linguistic entities and
context elements can be a weighted value. The weighted associations usually correspond
to the frequency of the observation of the co-occurrences of linguistic entities and context
elements. For example, in a term-by-document model, the frequency of the occurrences
of terms in documents can specify a weighted value.

1That is, F = {0, 1}, in the given Tuple 2.1.
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Context matrix is often instated using a sequential scan of input text-data, for example,
by collecting the co-occurrence frequencies in a hash table or database. Alternatively, a
search engine that keeps an inverted index of context elements and linguistic entities can
be used (Turney and Pantel, 2010). The collected frequencies in tabular presentations
are then converted to an efficient data structure—for example, a dictionary of keys, list of
lists, and so on—that are often used for sparse matrix representation and manipulation (for
an introduction to such data structures see Barrett et al., 1993, chap. 4). However, further
complications may be imposed by the adapted approach for collecting co-occurrence fre-
quencies. For instance, Schütze (1998) employs a method called context-group discrim-
ination that goes beyond counting the co-occurrence frequencies and building context
vectors at once.

An alternative set of vector space construction methods may not directly count the
co-occurrence events and build a co-occurrence frequency matrix. For example, Gallant
(2000) suggests a three-stage process for the construction of a vector space model. In the
first step, each word, which is assumed to be an irreducible context element that captures
meaning, is assigned to a normalised random vector. In the second step, using an iterative
process similar to the training in Kohonen’s self-organising maps, vectors of adjacent
words are altered in an attempt to preserve and show the neighbourhood relationships.
Finally, the vector space is generated using a combination of these vectors such as their
weighted sum (see also Gallant, 1991, 1994, for more details).

Kanerva et al. (2000) propose a similar method for vector space construction, which is
called Random Indexing (RI). The RI technique constructs a vector space using a similar a
two-step process and in a fashion to Gallant’s (2000) method. In the RI technique, the pro-
cess of vector space construction is carried out by the accumulation of a set of randomly1

generated sparse vectors, called index vectors. Each index vector represents a context ele-
ment in the model. To collect the co-occurrences, a linguistic entity is first assigned to an
empty vector that has the same dimension of index vectors. The co-occurrence of a lin-
guistic entity and a context element is then captured by accumulating the index vector that
represents the context element to the vector that represents the linguistic entity. A similar
technique, named TopSig, is proposed by Geva and De Vries (2011). In these methods,
context matrix formation merges with the dimensionality reduction step, often to address
scalability issues that are associated with processing large corpora. These methods are
studied in depth in Chapter 4.

2.3.2 Weighting
The construction of a context matrix is usually accompanied by a weighting process in or-
der to minimise the effect of the bias that may result from simple co-occurrence counting.
The major sources of bias are frequent context elements and entities. Frequent context
elements that are associated with greater numeric values can dominate those context ele-
ments with smaller numeric values. In a similar way, more frequent linguistic entities
may be associated with a larger number of context elements. Both of the above scenarios
cause bias. The amount and effect of this bias is dependent on the employed method for

1See Chapter 4 for an explanation of the meaning of random in this context.

http://atmykitchen.info/phd/thesis/chapter-4.pdf#chapter.4
http://atmykitchen.info/phd/thesis/chapter-4.pdf#chapter.4
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the similarity measurement.
The above reasons for weighting can be viewed, by some analogy, in conjunction with

feature selection in machine learning community (e.g., see Turney and Pantel, 2010, take
on the topic).1 First, it is desirable to give higher weights to more discriminative but less
frequent context elements. For example, in an information retrieval (IR) framework that
employs a document-by-term model, using the raw term frequencies (tf) implies the same
significance of terms when measuring the similarity between documents. However, the
term frequency–inverse document frequency (tf-idf) measure can substitute the raw term
frequencies in order to give higher value to more discriminative terms. The tf-idf measure
normalises raw term frequency weights by the inverse document frequency of terms (idf):
tf-idf = tf × idf. The idf of a rare term, which assumes to be a discriminative context, is
high, while the idf of a frequent term is expected low (for more details on tf-idf weighting
in IR context, see Manning et al., 2009, chap. 6).

For types of models other than document-by-term, tf-idf can be replaced by a measure
of association that indicates the strength of relationships between entities and contexts.
As verified in Curran (2004, chap. 4), context elements with stronger correlations to lin-
guistic entities are more informative than contexts with weaker correlations. A weak
association between a context element and a linguistic entity implies their independence
from each other. However, a strong association suggests that changes in a context element
are likely to occur with changes in linguistic entities, thus, the context element discrim-
inates between the linguistic entities well. For instance, in a term-by-term model, the
point-wise mutual information measure can be replaced by the simple term co-occurrence
counts (see, e.g., Bullinaria and Levy, 2007, for further explanation and experimental
comparison). Subsequently, the calculated associations can be used to sort the context
elements by their importance, and if desirable to filter a number of them.

Second, the weighting process is leveraged by a method often called length normal-
isation to cancel bias that results from highly frequent linguistic entities. For example,
in an IR document-by-term model, length normalisation corresponds to techniques that
cancel the advantage of long over short documents in retrieval tasks. Long documents
tend to appear with many terms; additionally, long documents are likely to have large
term frequencies (Singhal et al., 1996). In this setting, length normalisation adjusts the
term weights in conformity with the length of documents. The length normalisation, how-
ever, can be widened to any set of linguistic entities. In this generalisation, the frequency
of entities is replaced by the exemplified document length. In line with this reasoning,
highly frequent linguistic entities are likely to appear with more context elements than
less frequent ones. Moreover, the context elements that are occur with highly frequent
entities are probably associated with greater weights.

Among techniques that can be used for length normalisation, unit-length normalisa-
tion is a common approach. First, the length of a vector—that is, its norm—is computed.
Then the collected frequencies for context elements in the vector are divided by the its
computed. For instance, in an `2-normed space, the length of vector ~v, which represents

a linguistic entity, is given by ‖~v‖2 =
∑|~v|

i

√
v2

i . To perform the unit length normalisation,

1In this context, the weighting process is often called feature scaling.
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each element vi of~v (which represents a context element) is divided by ‖~v‖2. Thus, the ele-
ment vi

′ of the new normalised vector ~v′ is given by vector ~v′ (i.e., vi
′ = vi

‖~v‖2
). The impact

of unit length normalisation varies from one task to another, and it depends on a number
of additional factors, namely, the size of corpus and the distribution of entities and context
elements such as suggested by Périnet and Hamon (2014b); Gorman and Curran (2006),
and the employed metric for similarity measurement (see also Clark, 2015). These two
factors are inspected later.

Contrariwise, weighting may be used to introduce intentional bias toward the co-
occurrences of linguistic entities and certain context elements. For example, in a term-
by-term model that counts the co-occurrences of words, Lund and Burgess (1996) assume
that context words in closer vicinity to a target word represent more of its semantics than
distant words. Therefore, the co-occurrence of words are weighted according to their dis-
tance in an inverse relation. For a context window of n words on each side of the target
words, the number of intervening words between the target and context words is defined
as their distance d, and the frequency of occurrences are weighted with respect to their po-
sition in context windows by the magnitude of n − d (Burgess, 2001). By the same token,
Sahlgren et al. (2003) employ the function 21−d for the weighing of a context window.

Baroni et al. (2007) employ a weighting procedure to encode distributional histor-
ies of context words in a term-by-term model. The vectors are weighted using a ratio
of the encountered frequencies of context words. Baroni et al. (2007) suggest that fre-
quent words tend to co-occur with other words by chance. As a result, more frequent
context words have less informative distributional history than rare context words. The
employed weighting function, therefore, defines the influence of context words in an in-
verse proportion to their frequencies. Mathematically speaking, this method implements
a Laplace smoothing of the collected co-occurrences, which can be also found in Turney
and Littman (2003).

Zhitomirsky-Geffet and Dagan (2009) suggest that semantically similar words are best
described by the contexts that are common between them. Therefore, they employ weight-
ing to promote such contexts using a three-step bootstrapping process, similar to the pro-
posed method in Bins and Draper (2001). At first, similarity values between words are
calculated using contexts that are weighted by a mutual information measure. Next, the
common contexts between the obtained set of similar words are promoted by increas-
ing their weights. Yamamoto and Asakura (2010) propose a techniques that is bases on
a similar idea. Finally, the similarities are recomputed using the updated weights. These
methods can be criticised for their computational complexity, which is imposed by repet-
itive calculation of similarity measures, and then finding and sorting the common context
elements. This procedure of weighting is also the fundamental idea behind the learning
process in methods that employ neural networks such as Mikolov et al. (2013); Zeng et al.
(2014); Irsoy and Cardie (2014).1

1Although, advances in technology, such as the availability of graphics processing unit accelerated
technology, may remove this critique.
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Figure 2.7: Zipfian distribution of the co-occurrences of linguistic entities and context elements:
the distribution of word occurrences in documents a document-by-word model constructed using
the GENIA corpus. In (a), the vocabulary is ranked by the frequency of the words’ occurrences in
the documents. As is shown, most of the words are rare, which results in a long-tailed distribution.
Figure (b) shows the increase in the dimensionality of the model when new documents are.

2.3.3 Dimensionality Reduction

As discussed earlier, in distributional semantics, the distributional properties of lin-
guistic entities—that is, their co-occurrences with various context elements—are com-
pared to quantify some sort of semantic similarities. When a vector space is used to
represent and analyse these distributional properties, each element of the standard basis
of the vector space—that is, informally, each dimension of the vector space—represents
a context element. Consequently, given n context elements in a model, each linguistic
entity in the model is expressed by an n-dimensional vector.

As the number of linguistic entities that are being modelled in the vector space in-
creases, the number of context elements that are required to be utilised to capture and rep-
resent their meaning escalates (see the example in Figure 2.7). However, the proportional
impact of context elements on semantic similarities lessens when their number increases.
In a high-dimensional model, unless most coordinates of vectors are significantly differ-
ent, it becomes difficult to distinguish semantic similarities. For instance, under certain
broad conditions, it is likely that most entities are located at almost equal distances from
each other (Beyer et al., 1999). Consequently, the proximity of linguistic entities may not
express their semantic similarities.

For instance, in a word-by-document model that consists of a large number of doc-
uments, a word appears only in a few documents, and the rest of the documents are ir-
relevant to the meaning of the word. Few common documents between words results in
sparsity of the vectors; and the presence of irrelevant documents introduces noise. These
setbacks, which are caused by the high dimensionality of the vectors, are colloquially
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known as the curse of dimensionality.
This curse of dimensionality is often explained using power-law distributions of lin-

guistic entities and context elements—for example, the familiar Zipfian distribution of
words (see Yang, 2013, for further description of power-law distributions). Zipf’s law
states that most words are rare while few words are used frequently. As a result, ir-
respective of the input data size, extremely high-dimensional vectors, which are also
sparse—that is, most of the elements of the vectors are zero—represent linguistic en-
tities.1 For example, Sahlgren (2005) suggests that 99% of the elements of a vector in a
typical word-by-word model are zero (see also Sahlgren, 2006, chap. 4).

A dimensionality reduction process lessens noise and improves the performance of
the similarity measurement by reducing the number of context elements employed for the
construction of a vector space. Dimensionality reduction can be performed by choosing a
subset of context elements and eliminating the rest using a selection process. To resolve
the curse of dimensionality and reduce the sparsity of a vector space, a selection process
chooses a number of context elements that account for the most discriminative informa-
tion in the vector space. Consequently, the selection process results in a vector space of
lower dimension constructed by a subset of the original employed contexts.

In its simple form, a selection process filters irrelevant contexts using a heuristic based
on a threshold. After the construction of a vector space and weighting, context elements
that are associated with a weight or a frequency lower than a threshold are omitted from
the vector space. The main assumption is that rare low-frequency context elements are
uninformative and, therefore, do not influence the impending similarity assessments. For
instance, in a text categorisation task that employs a document-by-term model, Yang and
Pedersen (1997) show that statistical weight thresholding can be used reliably to halve the
dimension of the vector space.

In a linguistic-entity-by-word model, a common selection process is to eliminate con-
text words that belong to a stop word list. A stop word list is a fixed set of high-frequency
words that are clearly not related to the devised semantic similarity application. Likewise,
stemming and lemmatisation can be employed to reduce inflectional, and sometimes de-
rivational, forms of words to a common base form. The experiments performed by Bul-
linaria and Levy (2012) suggest that although these techniques speed up the similarity
computation by reducing the dimension of the vector space, they do not necessarily en-
hance the observed results. As described earlier in Section 2.2.3, linguistic information,
such as syntactic relations, can also replace, or be combined with, statistical measures to
select and filter contexts.

A selection process may also be used to rank and filter redundant contexts using an
information theoretic/statistical measure. Information gain, mutual information, and χ2

test are examples of measures that can be used to check the correlations between con-
text elements. If the correlation between context elements exceeds a certain threshold,

1Turney and Pantel (2010) also suggest that decreasing the sparsity will increase performance. How-
ever, they propose insufficient data as the major cause of the sparsity of vectors. Although insufficient data
can contribute to the sparsity problem, one can hypothesise that the power-law distributions of contexts and
entities play a more significant role in the sparsity of vectors than the data insufficiency. Further analysis is
required to investigate the degree of the dimension expansion of a vector space against its sparsity reduction
when the size of data increases.
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one of them is considered to be redundant and can be eliminated from the list of em-
ployed contexts (see Hall, 1999, chap. 4 for further explanation). However, for a very
high-dimensional vector space model that consists of hundreds of thousands of context
elements, such methods are computationally inefficient.

In a more sophisticated approach, instead of a selection process, heuristics are used
to implement a method of context generalisation. In Périnet and Hamon (2014b), con-
text elements are generalised by finding synonym and hypernym-hyponym relationships
between them. In the proposed, words in a sliding window constitute the context elements.
To reduce dimensionality and sparseness of vectors, the context words are arranged into
sets of words that are in a synonym or hypernym-hyponym relationship. To achieve the
dimensionality reduction, the obtained sets replace context words (see also Périnet and
Hamon, 2014a). Baker and McCallum (1998) uses a similar idea for dimensionality re-
duction in a document-by-term model in a text classification task. Baker and McCallum
(1998) state that while this method enhances the result of the classification task in one
corpus, it does not boost the performance in two other corpora. They conclude that the
structure of data (e.g., the diversity of vocabulary, the distribution of words and the size
of documents) plays a significant role in the performance of these methods of context
generalisation.

The process described above leads to an alternative set of dimension reduction tech-
niques known as transformation methods. A transformation method maps a constructed
vector space Rn to Rm of lower dimensions—that is, τ : Rn 7→ Rm,m � n. The vector
space at the reduced dimension Rm is the best approximation of the original model Rn in
a sense. The approximation is evaluated by a criterion such as variance, gradient descent,
or distance between context elements. The interpretation of these method using the dis-
tance between context elements in the transposed entity-context model is, perhaps, more
compatible with the suggested mathematical perspective in this thesis. Based on the em-
ployed evaluation criteria, transformations are categorised as either linear, for example,
truncated singular value decomposition, or nonlinear, for example, self-organising map.1

Truncated singular value decomposition (SVD) is the most familiar transformation-
based dimensionality reduction technique in the vector space models of semantics (e.g.,
see Deerwester et al., 1990, the latent semantic analysis model (LSA)). Truncated SVD is
a linear transformation method that exploits the Euclidean norm of context elements, or
variance,2 to compare a vector space with its projections in reduced dimensions. Given a
vector space Rn consists of p vectors, which is represented by a matrix Mp×n, the goal is
to construct an m-dimensional vector space, represented by a matrix M′

p×m, m � n, that
preserves most of the variance—thus, the Euclidean distances—in M.

SVD factorises the matrix Mp×n into the product of three matrices: U, a p × p norm-
alised orthogonal matrix (i.e., UUT = I); Σ = {σ1, σ2, · · · , σn}, a p × n diagonal matrix;

1Mathematically speaking, a selection process is a kind of linear transformation process.
2For a matrix Mp×n, the Euclidean norm, also called the Frobenius norm, is defined as ‖M‖F =√∑p
i=1

∑n
j=1 |mi j|

2.
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and the transpose of an n × n normalised orthogonal matrix V (i.e., VVT = I):

Mp×n = UΣVT =
( n∑

i=1

uiσivT
i

)
p×n
. (2.13)

The diagonal elements {σi} of Σ are called the singular values of M, and they are ordered
such that σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.1 For a chosen m, r ≤ m � n, the
SVD truncation of M with rank m is given by

M′
p×m = Up×mΣm×mVT

m×m =
( m∑

i=1

uiσivT
i

)
p×m

. (2.14)

The basis elements of M′ are orthogonal because the data is decorrelated in the `2-norm
(i.e., second-order) sense and thus their inner product is zero. According to Eckart and
Young’s (1936) theorem, M′ represents the best approximation of M in Rm, in which
‖M −M′‖ = σm+1 (see Martin and Porter, 2012, for references and elaboration).

The basis elements of the truncated vector space (VSMt) that M′ in Equation 2.14 rep-
resents express linear combinations of the correlated contexts in the original vector space
(VSMo) that M in Equation 2.13 represents. Therefore, in contrast to a selection pro-
cess, the basis elements of VSMt cannot be directly labelled using the contexts employed
in the VSMo. Instead, they show latent concepts that express weighted combinations of
contexts. Latent concepts may capture certain paradigmatic similarities, often called high-
order structures, between the context elements employed in VSMo (see Leopold, 2005, for
further mathematical explanation).2

Interpretation of the attached variances to context elements justifies different applica-
tions of truncated SVD. Turney and Pantel (2010) enumerate latent meaning, high-order
co-occurrence, sparsity reduction, and noise reduction and leave the door open for fur-
ther innovative applications. Under the assumption that the covariance of context ele-
ments indicates their similarity,3 truncated SVD can be seen as a technique that exploits
the Euclidean norm to measure similarity between context elements. Truncated SVD
groups contexts into latent concepts such that it captures latent meaning and high-order
co-occurrences; consequently, SVD truncation results in a vector space VSMt that ex-
presses entities in a latent semantic space.

For instance, in the LSA model, a truncated SVD model represents the semantic re-
lationships between documents using latent concepts that are derived from a document-
by-word model. The latent concepts, also called latent topics, may capture synonymy
relationships between words and enhance similarity measurements (Martin and Berry,
2011).4 Consequently, the introduction of the latent concepts, which are more general
than the contexts employed originally, results in the sparsity reduction. SVD truncation,

1Z = UΣ are called the principal components of M.
2See also Sahlgren (2006, chap. 7) who suggests that the enhancements in TOEFL experiments with

the LSA model are the result of encoding paradigmatic relations between context words using the truncated
SVD.

3That is, the Euclidean distance between context elements in the transposed model.
4This argument can be generalised if synonymy relationship replaces a paradigmatic relationship.
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however, does not guarantee generation of most suitable combinations of contexts for
an intended application. For instance, in a cross-language information retrieval task per-
formed on Wikipedia articles, Cimiano et al. (2009) report that truncated SVD does not
enhance the obtained results.

Dimension reduction by truncated SVD implies that contexts associated with large
variance express discriminative information. By the same token, under the Gaussian as-
sumption of noise, the low variance contexts are supposed to be unimportant and noisy.
Therefore, the truncation of SVD using highest singular values, as suggested in Equation
2.14, can be viewed as a filtering procedure that eliminates noise. The performance of
noise reduction using SVD, however, depends on the distribution of the co-occurrences
of linguistic entities and the context elements. While SVD truncation can be applied to
remove Gaussian noise from data (e.g., white noise from sinusoidal signals), it fails with
noise of a non-Gaussian nature. For instance, observations such as Figure 2.7a indicate
that the co-occurrences of words in documents follow a non-Gaussian distribution (see
also Sichel, 1975). Therefore, the use of SVD truncation for noise reduction is not effect-
ive in models that are based on the co-occurrences of words.

SVD is sensitive to the measurement scales of the context elements being analysed.
Because a truncated SVD model retains linear combinations of the context elements that
maximise the magnitude of variance, it is biased towards context elements that have lar-
ger variation values. If contexts are presented using values of different scales, then SVD
truncation will be in the favour of context elements that are presented in scales of larger
magnitude. Therefore, a scaling process is necessary before performing the SVD compu-
tation (see Jackson, 2004, for further information on methods of scaling).

In dimensionality reduction using the SVD truncation, the degree of dimension reduc-
tion should be decided by choosing a value for m in Equation 2.14. An optimum value
for m is determined by the structure of the underlying data as well as the intended ap-
plication. Direct selection of an optimum m, however, remains an open question (Martin
and Berry, 2011). Therefore, the value of m is often found by an exhaustive evaluation.
In order to find the most satisfactory m, a performance measure suitable for the intended
application is defined to compare several values of m. For example, in an information
retrieval task, the estimated precision per m in retrieval tasks decides the best degree of
dimension reduction.

The computation of SVD for dimension reduction entails solving a linear equation
that finds eigenvectors. For a given n-dimensional vector space, direct solution to this
equation, known as the Gram–Schmidt process, is computationally trivial and of O(n2)
complexity. Accordingly, the direct computation of truncated SVD for mapping Rn to Rm,
m � n, demands computational complexity proportional to O(n2m). In practice, the sin-
gular values are approximated using iterative techniques such as the Lanczos method and
its variations that take advantage of the sparseness of vector spaces (see Saad, 2003, chap.
7). In k iterations, the m largest singular values of a vector space are calculated directly
and therefore the computational complexity of the transformation process is decreased
to O(nkm).

Truncated SVD requires the vector space of higher dimension than the targeted re-
duced dimension—that is, M in Equation 2.13—to be constructed prior to the process
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of dimension reduction. However, this may not be desirable when dealing with large
corpora. The size of a vector space that is built using a regular method of context mat-
rix formation is a function of the size of the corpus. A regular context matrix forma-
tion associates entities to context elements, often using normalised values induced from
the observed co-occurrence frequencies across the corpus. Such that context matrix be-
comes computationally intractable when the corpus size increases (e.g., Figure 2.7b). In a
term-by-document model, for instance, the dimension of the vector space dim before the
dimensionality reduction process is equal to the number of documents in the corpus |c|;
appending n new documents to the corpus corresponds to an increase in the dimension of
the vector space—that is, dim = |c| + n. This is a non-trivial task when the corpus is big
or its size increases at a sharp rate such as Web-scale information extraction tasks.

In addition to the aforementioned problems, the basis of the vector space with reduced
dimensionality, which the data is projected onto, is also required to be devised prior to the
projection task. If the structure of the data that is being analysed changes, the basis of
the projected vector space also changes. Therefore, every time data is updated (i.e., a
new context element or linguistic entity is added to the vector space), SVD should be
recalculated in order to generate a suitable projection. This limitation is also generalised
to dimensionality reduction techniques that are based on matrix factorisation techniques
other than SVD, such as QR and ULV decomposition. Random indexing is an alternative
dimension reduction technique that alleviates these issues.

The random indexing (RI) method, which is first introduced by Kanerva et al. (2000)
for the construction of a word-by-document model and further delineated by Sahlgren (e.g.,
see Sahlgren, 2005, 2006), utilises all the advantages listed above to create a vector space
model of semantics at reduced dimension. As recently described by QasemiZadeh and
Handschuh (2015), the RI method can be seen in the form of a two-step procedure that
consists of the construction of a) index vectors and b) context vectors. In the first step,
each context is assigned to exactly one index vector ~rck . Sahlgren (2005) indicates that
an index vector is a randomly generated high-dimensional vector, in which most of the
elements are set to 0 and only a few to 1 and -1. In the second step, the construction of
context vectors, each target entity is assigned to a vector of which all elements are zero
and that has the same dimension as the index vectors. For each occurrence of an entity,
which is represented by ~vei , in a context, which is represented by ~rck , the context vector
for the entity is accumulated by the index vector of the context—that is, ~vei = ~vei + ~rck .
The result is a vector space model, which is constructed directly at reduced dimension.

The procedure in the RI technique can be better explained by an example of a word-
by-document model. In the first step of the process, each document in the corpus—that is,
a context element—is assigned to an index vector ~rdi of dimension m much smaller than
n. Each word in the corpus is then assigned to an empty context vector ~vew—that is, all the
elements of the vector are set to zero—and dimension m. The context vectors assigned to
words can then be updated through a sequential scan of the corpus. For each occurrence
of a word in a document di, its context vector ~vew is updated such that ~vew = ~vew + ~vdi .
Given n documents and p words in the corpus, instead of a matrix Mp×n, the RI procedure
results in a matrix M′

p×m that represents the vector space model at reduced dimension by
the factor n

m .
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The random indexing method, thus, can be used to address a number of issues that
are faced when using SVD truncation. For instance, in RI method, adding new con-
text elements to the model is realised by adding new index vectors, without demanding
a recalculation of the projection. Chapter 4 provides a comprehensive description and
mathematical justification of the RI method. As is shown in Chapter 4, the RI method
belongs to a category of dimensionality reduction techniques that are based on random
projections.

The linear methods, such as SVD truncation and the RI method, have often been criti-
cised for their inability to capture nonlinear structure of data beyond the `2-norm (or, the
second-order statistics). In contrast to linear techniques that assume the text data lies on a
linear sub-space of a high-dimensional space, a number of dimensionality reduction tech-
niques go beyond linearity assumption and explicitly reconstruct the data in an embedded
manifold. These methods, known as nonlinear dimension reduction techniques, are fur-
ther categorised by their underlying theory (e.g., see Van der Maaten et al., 2009, for a
survey). In the context of natural language processing, Kohonen’s (1990) self-organising
maps is, perhaps, the most familiar example of a nonlinear dimensionality reduction tech-
nique (see also chapters of Honkela, 1997). Some experiments suggest that nonlinear
methods do not necessarily outperform linear techniques, specially on real-world data-
sets containing noise or having discontinuous or multiple sub-manifolds (Huang and Yin,
2012).

While the use of neural networks and non-linear transformations are gaining popular-
ity in several domains of study in distributional semantics, the study of these methods is
left for another occasion. This section has only scratched the surface of the dimension-
ality reduction techniques that are most commonly applied in the distributional models
of semantics. In the context of distributional models of semantics, dimension reduction
techniques are still maturing with respect to several factors such as their performance, ef-
ficiency and underlying theories, as well as the data and intended applications of models.
Figure 2.8 provides readers with a summary of the discussions in this section.

2.3.4 Similarity Measurement
The computation of vector similarities, which serves as a quantitative approximation of
semantic relatedness between entities, is often the last step of the processes. As discussed
in Section 2.2.1, a vector space model of semantics is endowed with structures called
inner product, norm, and distance that are employed to define similarity measures between
vectors. The cosine similarity and the Euclidean distance1 are the familiar examples of
such measures in the En. Given the definition of inner product in En by Equation 2.8 and
vectors ~vi = 〈vi1, vi2, · · · , vin〉 and ~v j =

〈
v j1, v j2, · · · , v jn

〉
, the cosine similarity of ~vi and ~v j

is given by the inner product of vectors when their length is normalised:

cos(~vi,~v j) =
〈~vi,~v j〉

‖~vi‖2‖~v j‖2
=

∑n
k=1 vikv jk√∑n

k=1 v2
ik

∑n
k=1 v2

jk

. (2.15)

1Also called 2-norm or `2.

http://atmykitchen.info/phd/thesis/chapter-4.pdf#chapter.4
http://atmykitchen.info/phd/thesis/chapter-4.pdf#chapter.4
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Figure 2.8: A map of dimensionality reduction techniques. Although not all methods neatly fall
into the provided categorisation, it provides readers with a summary.

Likewise, the Euclidean distance is defined as:

d(~vi,~v j) = ‖~vi − ~v j‖2 =

√√
n∑

k=1

(vik − v jk)2. (2.16)

As indicated by the numerator of Equation 2.15, the cosine similarity calculates the over-
lap between the vectors and thus it is a measure of the shared context elements between
linguistic entities. In contrast, the Euclidean distance conveys the differences between cor-
responding context elements and thus it is a measure of discrepancy between linguistic
entities.

The familiar Euclidean norm in a real vector space Rn can be replaced by other p-
norms, 1 ≤ p < ∞,1 in order to calculate similarity between vectors in `p-normed
spaces—that is, a vector space that is endowed with the `p norm.2 For a given vector

1For 0 < p < 1, the p-norm is called a quasi-norm, as it does not satisfy the triangle inequality in the
definition of a norm. However, `0—that is, p = 0—does not satisfy the homogeneity condition, and it is
thus not a norm. From `0 one can arrive at the definition of the Hamming distance. While Hamming spaces
have been also used for similarity measurement in distributional semantics, their study goes beyond the
scope of this thesis. A comprehensive study on the use of Hamming spaces in distributional semantics can
be found De Vine (2013) and De Vries (2014) (see also Gionis et al., 1999).

2Remember from Section 2.2.1 that En is a Rn that is endowed with the Euclidean norm (i.e., the `2-
norm); it is thus an `2-normed space.
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Name Formula

Dice sDice(~vi,~v j) =
2
∑n

k=1 vikv jk∑n
k=1 v2

ik+
∑n

k=1 v2
jk

The harmonic mean sHM(~vi,~v j) = 2
∑n

k=1
vikv jk

vik+v jk

Jaccard sJaccard(~vi,~v j) =
∑n

k=1 vikv jk∑n
k=1 v2

ik+
∑n

k=1 v2
jk−

∑n
k=1 vikv jk

Table 2.3: Examples of similarity measures in the inner product family. In these equations, similar
to the cosine similarity in Equation 2.15, the inner product of vectors in the denominators of the
formulas is normalised using different values. These measures show the commonality between
vectors.

~v in an `p-normed space, the Euclidean norm ‖~v‖2 in Equation 2.8 is generalised to

‖~v‖p =
( n∑

i=1

|vi|
p
) 1

p
. (2.17)

Hence, the distance between the two vectors ~vi and ~v j in a `p-normed space—also known
as the Minkowski distance—is given by

dp(~vi,~v j) = ‖~vi − ~v j‖p =
p

√√
n∑

k=1

|vik − v jk|
p. (2.18)

Amongst the dp distances, besides the Euclidean distance, the `1 distance, also known as
the Manhattan distance or city block distance, has been employed for semantic similarity
measurement.

As discussed earlier, the collected frequencies of the co-occurrences of linguistic en-
tities and context elements can be interpreted in mathematical frameworks other than the
vector space model. Therefore, it is common to employ probabilistic and information-
theoretic measures for similarity calculation. Many of these measures satisfy the axioms
listed in the definition of distance (norm)1 and therefore can be categorised in an `p dis-
tance family. From this perspective, a dp distance can be normalised in different ways
to design new distance measures. However, there are many other measures that do not
satisfy the required axioms for a distance metric. An example of this categorisation is
given by Cha (2007).

Cha provides a survey of similarity measures and their properties. He enumerates
dozens of similarity measures and groups them according to their syntactic characteristics
(i.e., the homogeneity of their formulas), the correlation between their generated results in
a clustering task, and the caveats in their implementations. Following his survey, Tables
2.3, 2.4, and 2.5 provide a list of similarity measures analogous to `1, `2, and inner product

1See on page 32.
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Name Formula

Bray-Curtis sBC(~vi,~v j) =
∑n

k=1 |vik−v jk |∑n
k=1 vik+v jk

Canberra sCan(~vi,~v j) =
∑n

k=1
|vik−v jk |

|vik |+|v jk |

Gower (see Pavoine et al., 2009, for description) sGower(~vi,~v j) = 1
k

∑n
k=1

|vik−v jk |

wk

Soergel sSoe(~vi,~v j) =
∑n

k=1 |vik−v jk |∑n
k=1 max(vik ,v jk)

Table 2.4: Examples of (dis)similarity measures in the `1 distance family. In the definition given
for sGower, wk indicates the range of the values for the kth element of vectors.

Name Formula

Clark sClark(~vi,~v j) =

√∑n
k=1

( vik−v jk

vik+v jk

)2

Symmetric χ2 sS ymχ2 (~vi,~v j) =
∑n

k=1
(vik−v jk)2

max(vik ,v jk)

Weighted Euclidean sWE(~vi,~v j) =

√∑n
k=1

(vik−v jk)2

wk

Table 2.5: Examples of (dis)similarity measures in the `2 distance family. In the definition given
for sWE, w j denotes a weighting value.

formula, respectively (to verify the given definitions, see Deza and Deza, 2006, 2014).
Examples of information-theoretic similarity measures are given in Table 2.6.

Amongst his observations, Cha suggests that the family of inner product measures,
such as cosine, generates results closely related to `2 distance. In addition, the results
generated by the two distance metrics da and db are highly correlated if da = cdb or
da = 1− db. Particularly, in distributional semantics, because of the sparseness of vectors,
a method of smoothing is required to alleviate these problems, which is a major research
problem on its own (e.g., see Chen and Goodman, 1999). For example, in these cases,
one solution is to replace zero with a very small value—that is, the additive smoothing
technique.

There is an extensive body of research on learning distance metrics, with detailed
studies that go beyond the scope of the discussion in this section. In these methods, a
distance metric is altered, often using a weight normalisation mechanism in order to reflect
a set of given constraints on similarities (e.g., wk in the definition of sWE

1 in Table 2.5 and
sGower in Table 2.4). The weight normalisation problem is usually modelled as a learning

1In this context often called the Mahalanobis distance.
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Name Formula
Bhattacharyya sB(~vi,~v j) = − ln

∑n
k=1
√vikv jk

Hellinger sH(~vi,~v j) =
∑n

k=1 (
√

vik −
√v jk)2

K-Divergence sKD(~vi,~v j) =
∑n

k=1 vik ln( 2vik
vik+v jk

)

Kullback-Leibler sKL(~vi,~v j) =
∑n

k=1 vik ln( vik
v jk

)

Table 2.6: Examples of information theoretic similarity measures adopted in the vector space
models, assuming vectors represent probabilities.

task in the framework of an optimisation problem. For instance, given constraints in the
form of ‘x is close to y’ for a set of pairs of vectors x and y, Xing et al. (2002) suggest
a method that learns a distance metric. Schultz and Joachims (2004) suggest a similar
technique, however, when the constraints are given in the form of a set of triplets such
as ‘x is closer to y than it is to z’. In the machine learning literature, metric learning is
often studied as a learning scheme for feature weighting (see Kulis, 2013, for survey and
references). These techniques, thus, can be perceived in combination with the preceding
weighting step in which more indicative contexts are assigned to higher weights in order
to increase their impact on the similarity measure. Alternatively, given a known set of
related vectors, it is possible to compare distance metrics in order to choose the most
suitable one.

Bullinaria and Levy (2007) provide a comparison between several similarity meas-
ures. The comparison is carried out by studying the results of four different experiments
that employ word-by-word models:

TOEFL : From four given choices, a word is selected that has the closest meaning to a
target word in a dataset consisting of 80 questions.

Distance : Similar to the TOEFL test, but the distance between a pair of semantically
related words (e.g., lettuce and cabbage) is compared with the distances between
10 randomly chosen pairs of words from a set of 200 words in order to assess the
structure of the model at a larger scale than the TOEFL test.

Syntactic Clustering : The distance between a target word’s vector and the centre of a
cluster that represents its syntactic category is measured and the ratio of words that
are closer to their real syntactic category than another is defined as the performance
measure. The test is limited to 100 words from 12 different syntactic categories.

Semantic Clustering : The same test as above, however, for semantic categories. The
performance measure is defined as the ratio of words that are closer to their own se-
mantic category than others. The experiment is limited to 530 words in 53 semantic
categories.
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Si
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k Experiment

(TOEFL) (Distance) (Synt. Cluster) (Sem. Cluster)

1 Hellinger Kullback-Leibler City Block Kullback-Leibler
2 Bhattacharya City Block Hellinger Hellinger
3 City Block Hellinger Bhattacharya Bhattacharya
4 Kullback-Leibler Bhattacharya Cosine City Block
5 Cosine Cosine Kullback-Leibler Cosine
6 Euclidean Euclidean Euclidean Euclidean

Table 2.7: Performance of similarity measurements with respect to each other in Bullinaria and
Levy’s (2007) experiments; rank 1 shows the best-performing similarity measure.

Experiment

(TOEFL) (Distance) (Synt. Cluster) (Sem. Cluster)

Best ≈ % 75 90 92 71
Worst ≈ % 65 85 82 58

Table 2.8: Approximate values for the best and the worst performances of similarity measurements
in Bullinaria and Levy’s (2007) experiments.

Table 2.7 represents the performance of the similarity measures in the tasks explained
above. The results shown in the table are limited to when vectors are weighted such that
they represent the conditional probabilities p(wc|wt), where wt and wc are the target and
context word, respectively. As is shown in the table, the best performing measure varies
from one experiment to another. While a similarity measure such as city block has a
constant superior performance with respect to measures such as the Euclidean and the
Cosine, this relationship does not hold for other metrics such as the Kullback-Leibler and
Hellinger. An approximate difference between the best and worst performing measures
is shown in Table 2.8. As suggested in Cha (2007), the Kullback-Leibler and Hellinger,
and the Cosine and Euclidean show similar behaviours in Bullinaria and Levy’s (2007)
experiments.

In an earlier experiment similar to Bullinaria and Levy’s (2007) Distance test, Lee
(2001) provides a report of the performance of similarity measures which is analogous to
the result shown in Table 2.7. She also reports that the city block outperforms the cosine,
and the cosine outperforms the Euclidean distance, whereas a weighted Kullback-Leibler
method, called skew divergence, gives the best performance. However, Bullinaria and
Levy (2007) show that the cosine similarity can outperform all the similarity measures
in every one of the above tasks when a suitable weighting process, such as pointwise
mutual information, substitutes the probability weighting. In another experimental setup,
Curran (2004, chap. 4) suggests that the Dice and Jaccard outperform the cosine simil-
arity measure. In an automatic synonym acquisition task, Shimizu et al. (2008) report
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that a weighted Euclidean measure, which obtains weights through a supervised learning
method, outperforms all other metrics in their experiment. In their reported experiment,
the cosine and the Jaccard are the next-best-performing measures and are listed above the
Euclidean and, contrary to the above reported-experiments, the city block measure.

In an alternative approach, instead of mere performance comparison, Weeds et al.
(2004) suggest an attributive comparison of similarity measures. In a synonym detection
task, Weeds et al. (2004) compare 10 various similarity measures by investigating the
frequency characteristics of target words and their closest neighbour words given by a
similarity measure. They correlate the frequency of the obtained neighbour words to their
distributional and semantic generality and accordingly classify similarity measures into
three groups. The first group of measures are those that are biased towards selecting
high-frequency, and thus more general, words. The second group of measures are those
that are more sensitive to to low-frequency, thus more specific, words. The third group
consists of those measures that are in favour of with a similar frequency to target words.
In their experiment, the cosine and the skew divergence are categorised in the first group,
whereas the Jaccard and the harmonic mean are classified in the third group. A similar
study of similarity measures in an information retrieval context is given in Jones and
Furnas (1987).

Mathematically speaking, the distribution pattern of entities in a vector space determ-
ines the performance of similarity measures. In the absence of a priori knowledge of the
distribution of data, similarity measures are often evaluated empirically. An approach,
such as that described above or proposed by Lin (1998b), is employed to interpret sim-
ilarity measures’ performance and elucidate their differences. With such intuition, as
an example, Lee (1999) suggests that for sparse models, commonality-based similarity
measures—such as the Dice and the cosine—are expected to outperform those that are
based on differences such as the Euclidean distance. In information retrieval, Jones and
Furnas (1987) compare the sensitivity of several similarity measures to within-object and
between-object differences and conclude in favour of the cosine measure.

The literature reviewed unanimously agrees that various similarity measures exhibit
different behaviours in different tasks and thus there is no single superior measure for all
applications. In a given application, therefore, the choice of a similarity metric is likely
to affect the quality of the observed result.

2.3.5 Orchestrating the Processes

This section concludes our discussion on the processes in vector space models of se-
mantics by emphasising the importance of a holistic approach to their design and imple-
mentation. As described, the goal of the chain of processes introduced in this section is
to simulate a sense of semantic relatedness between vectors that represent the linguistic
entities being modelled. As is explained, the semantic relatedness is ultimately translated
into the proximity of vectors, which is transpired by a notion of similarity measure. The
efficacy of measures is predominated by the distribution of vectors, which, in turn, is a
function of the answer to the earlier question of ‘what the context elements are’. A change
in context elements results in the transformation of the vectors’ distribution in the model
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and thus it is highly likely to cause redesign in the subsequent processes, amongst them
the similarity measurement.

Usually, the use of one specific method in one of the processes introduced in this
section limits the choice of methods that are available to be applied in the remaining pro-
cesses. For instance, the choice of a random projection with Gaussian random matrix
for the dimensionality reduction limits the options for the similarity measurement. Sim-
ilarly, the choice of random indexing limits the options for the weighting process. As
discussed in Chapter 4, using random indexing for collecting co-occurrences results in
a Euclidean vector space model; therefore, the use of similarity measures other than the
`2 distance family cannot be justified, at least mathematically. In other words if for any
reason, the use of norms other than `2 is preferable, then a Gaussian random projection
technique such as random indexing cannot be employed. With the same rationale, using
SVD truncation is not justified when similarities are measured using a metric other than
the `2 distance family.

Moreover, one method can neutralise the advantages of another method. For example,
normalising the Euclidean distance by the inverse of the variance of contexts in a vector
space model that is induced by SVD truncation has no effect on the obtained similarities.
In the same way, if SVD truncation is used for the dimensionality reduction, a weight
scaling is recommended as a pre-processing step. Nonetheless to say that Likewise, a
number of similarity measures, such as the familiar Euclidean and cosine similarity, are
equivalent if the vectors are normalised to unit length. In contrast, as the experiment
shows, the right combination of methods in the above processes can enhance the observed
results dramatically.

Last but not least, the suggested cascaded architecture for processes, in which one
process is applied after the other in a pipeline, may not be applicable or desirable in a
real-world application. The suggested arrangement of the processes and the clear-cut
boundaries between them are given solely for clarity in the presentation. The software
architecture of an implemented distributional semantic method may require a complex
sequence of interactions far beyond what is described in this section.

2.4 Classification in Vector Spaces
In a vector space model of semantics (VSM), a variety of machine learning algorithms
can be employed to address a range of classification and clustering problems. A class is
a set of entities that can be identified by characteristics that all its members share. The
classification problem is the task of automatic assignment of entities to classes. However,
if the classes are not known prior to the assignment task, then the task is called clustering.
Clustering thus is the task of grouping entities by their mutual characteristics in such a
way that the members of a group, called a cluster, are more similar to each other than to
the members of other clusters in a sense. The classification task is usually referred to as
supervised learning, whereas the clustering task is known as unsupervised learning.

Familiar examples of such tasks are document classification and clustering. In a
document-by-term model, instead of measuring similarities between a pair of documents,
or a query and a document, the documents are categorised by certain criteria, for instance,

http://atmykitchen.info/phd/thesis/chapter-4.pdf#chapter.4
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their subject areas. In this example, if the subject areas are known beforehand—for ex-
ample, the subject areas are limited to science and art—the task is called document clas-
sification. However, if the subject areas are not known beforehand, then the task is called
document clustering and it organises the documents, for this given example, into groups
that give a sense of the subject areas. Using different context types, documents can be
classified, instead of by subjects area, by their relatedness, style, theme, sentiment, author
characteristics, etc.

In the combination of a learning technique with a vector space model, the learning
algorithm compares the vectors by its own implemented logic of similarity. In a vector
space model, which interprets the meaning of linguistic entities such as documents using
the geometry of vectors, a class or a cluster refers to a collection of vectors that form
a region. A learning algorithm consequently identifies these regions. This perception
implies the assumption that entities of the same class or cluster form a contiguous region
and regions of different classes do not overlap.1 Violations of these assumptions are the
main causes of inaccuracy in classification and clustering tasks.2

A classification task—that is, supervised learning—can be formalised by a mapping
function f . For a vector space V and an output space L, which consists of a finite set
of category labels l, the classification process is given by f : V 7→ L. The mapping
function f is learned by a machine learning algorithm during a process called training.
The training process chooses a function that best estimates the relationship between the
input vectors and the output labels from a given set of instances T ∈ V×L, which is called
the training dataset. If L = R, then the classification task is called regression. For |L| = 2,
the task is called binary classification. If |L| > 2, then the task is called multi-class or
multi-way classification. In a clustering task—that is, unsupervised learning—the T and
L are not presented explicitly. Instead, criteria—such as the cardinality of L, the way
similarities are compared, and a relationship between members of clusters—are given.

These learning algorithms are the subject of vibrant scientific research in a frame-
work known as statistical learning theory. The comprehensive study of these methods,
therefore, requires dedicated research. In this section, however, the surface of topics in
statistical learning theory are scratched and only learning methods that take a geometric
approach to a classification task are introduced. These methods classify data in a normed
space and, thus, are compatible with the interpretation principles of vector space models,
which are introduced earlier in Section 2.2. The methods introduced in this section are
used later in this thesis.

In statistical learning theory, learning procedure is formalised using a mapping func-
tion (V × L)n 7→ F . In this definition, F , which is called the hypothesis space, is a space
of functions fm : V 7→ L, where V and L are the input vector space and the output label
space, respectively. The learning algorithm searches in F for a function that best approx-
imates the relationship implied between the vectors and the labels by the set of n samples
from (V × L)n. This formalisation is based on two assumptions. First, it is assumed that
the data is being classified, that is, the set of n tuples 〈~v, l〉, are drawn independently and

1Evidently, it can be also interpreted as a corollary to the distributional hypothesis.
2Alternatively, in a probabilistic framework, classes are interpreted as hidden properties of entities,

often named latent variables.
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identically from a fixed but unknown joint probability distribution p(~v, l). Second, in or-
der to assess the quality of learning, it is assumed that there is a notion of loss or error
that can determine, for a given input vector, the discrepancy between the expected label
and the label predicted by a fm. This is indicated by a Loss function loss : L× L 7→ R. For
a given vector ~v and the expected label l, Loss(l, fm(~v)) gives the error of fm.

By these assumptions, the goal of the learning process is to find a fo ∈ F that min-
imises the average error. For f ∈ F , the average error, which is also called the risk of f
R( f )is given by:

R( f ) =

∫
V×L

Loss(l, f (~v))dp(~v, l). (2.19)

However, R( f ) cannot be computed because the probability distribution p(~v, l) is un-
known. The learning problem formalised above can be solved using a variety of ap-
proaches. From one perspective, similar to the proposed taxonomy of the distributional
methods in Section 2.1.2,1 the learning techniques can be categorised into methods that
provide a solution using probability estimation techniques or methods that interpret the
learning problem in a metric space.2 As cited by Jain et al. (2000), however, under certain
assumptions on the probability distributions, the two approaches are equivalent.

In the probability-based category, two major approaches to approximate R( f ) can be
recognised. In the first group of methods, it is assumed that the type of the distribution of
data is known; thus, a probability model with a number of fixed parameters can be used
to estimate p(~v, l). Consequently, the training dataset T is used to estimate the value of
the model’s parameters. For instance, assuming the data has a Gaussian distribution, the
joint probability is estimated using the mean and variance of the data samples in T . The
familiar algorithm in this group is the naïve Bayes classifier.

The second group of probability-based methods, in contrast to the former methods, do
not assume prior knowledge of the type of data distribution. These techniques estimate
p(~v, l) by the observation of the data samples provided in T . In distributional semantics,
the Blei et al.’s (2003) latent Dirichlet allocation for uncovering topic models is a well-
known example of these methods. Both category of methods listed above can exploit the
learned joint distribution in a reverse fashion; that is, given a class label l, they can syn-
thesise examples of context elements related to l. Hence, the probability-based methods
are often known as generative approaches.

On the other side, one category of learning techniques—often named as discrimin-
ative methods—bypasses the probability estimation and approximates R( f ) directly. A
subcategory of these methods adopt a geometric approach in the sense that they refor-
mulate a learning task as the construction of decision boundaries in a metric space. The
support vector machine algorithm and the k-nearest-neighbours technique are the familiar
examples in this category. These methods approximate R( f ) from the training set T using
an induction principle such as empirical risk minimisation (ERM). Given n samples 〈~vi, li〉

1See Figure 2.2.
2This inventory can be expanded, for example, by adding information-theoretic-based approaches, etc.
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in T , the empirical risk of function f over T is given by:

Remp( f ) =
1
n

n∑
i=1

Loss( f (vi), li). (2.20)

It is expected that the function f that has a small empirical risk (i.e., Remp( f )) will also
have a small risk (i.e., R( f )). It is proved that for f of finite complexity, Remp( f ) converges
to R( f ) when n → ∞ (see Evgeniou et al., 1999, for further explanation). Therefore, it is
assumed that the goal of a learning task can be achieved—that is, finding the fo ∈ F that
minimises the risk R( f )—by finding the fo that minimises the empirical risk Remp( f ):

fo = argmin
f∈F

Remp( f ) = argmin
f∈F

(
1
n

n∑
i=1

`( f (vi), li)). (2.21)

Accordingly, Remp( f ) is employed as a quantifiable method for the assessment of the
generalisation ability of fo—that is, it is assumed that if fo has a small Remp( f ), then it
also has a high generalisation ability.1 Whereas research in machine learning investigates
developing algorithms by suggesting induction principles other than ERM,2 and impos-
ing restriction on the complexity of F 3, in this thesis, the scope is limited to the use of
memory-based k-nearest neighbours (k-nn) algorithms. The k-nn algorithm implies that
the fo that determines class labels by taking an average of the class labels of instances in
T that are close to input ~v has the lowest Remp.4

2.4.1 The k-Nearest Neighbours Algorithm
The k-nearest neighbours (k-nn) algorithm is a learning technique that is explained by the
geometry of vectors in space (Cover and Hart, 1967).5 In k-nn, instances of data—that
is, vectors—are classified based on the class of their nearest neighbours. It is a two-step
process: in the first step, the k closest vectors to the data item being classified are located;
in the second step, the class label of the data item is determined using the class label of
these nearest neighbours.

Given a vector space V and a training dataset T ∈ V ×L, where L is a finite set of class
labels, it is assumed that there exists a distance function d : V ×V → R, such as that given
in Section 2.3.4, that assigns a distance value d(~v,~t) to each pair of vectors ~v ∈ V and
~t ∈ T . In its simplest form, when k = 1, for an input vector ~v ∈ V , T is searched for the ~t

1Although in real-world applications, this assumption does not hold. If the training dataset is small or
the hypothesis space F is large, then there are many functions that can satisfy Equation 2.21. Under these
conditions, however, using ERM may not necessarily result in a function that has a high generalisation abil-
ity. Under such circumstances, a function fo that shows a high performance during the learning procedure
shows a poor performance when dealing with data samples other than T . This is often called overfitting.

2Which its study goes beyond the scope of this thesis.
3For example, using the assumption that the target function fo is in the form of a linear discriminant

function.
4Also, see Kulkarni and Harman (2011), for further elaboration of statistical learning theory and stim-

ulating questions.
5Perhaps more intuitive than SVM.
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that has the least distance to the~v and its class label is assigned to the~v. This classification
task can be formalised by the mapping function nn that returns corresponding label l ∈ L
of vector ~t such that:

nn(~v) = l~t, where ~t = argmin
~y∈T

d(~v, ~y). (2.22)

By the same token, the nn(~v) can be generalised to k neighbours. After finding the k
closest instances in T to ~v, that is {t1 · · · tk}, the most straightforward approach—known as
unweighted voting—is to assign the majority class label among the k nearest neighbours
to the data item being classified:

k-nn(~v) = ly, where ly = argmax
l∈L

k∑
i=1

δ(l, f (~ti)), (2.23)

where f (~ti) denotes the class label of ~ti ∈ T , and δ(x, y) is a function that compares the
two class labels x and y, that is:

δ(x, y) =

1 x = y
0 x , y

. (2.24)

However, a distance weighted method can replace the unweighted sum of labels:

k-nn(~v) = ly, where ly = argmax
l∈L

k∑
i

wiδ(l, f (~ti)), (2.25)

where wi is real valued function on the distance between ~v and instances from the training
set. For example, the weight function can be defined as an inverse of the distances between
~v and ~ti ∈ T , that is:

wi =

1 x = y
1

d(~v,~ti)
x , y

. (2.26)

Similarly, as suggested by Daelemans et al. (2009) and Cunningham and Delany (2007),
wi can be defined using an exponential function based on Shepard’s (1987) justification,
that is:

wi = e−αd(~v,~ti)β , (2.27)

where α and β are constant, often α, β = 1, that are used to control the power of expo-
nential decay factor. The k-nn algorithm, thus, can be alternated by adopting different
approaches for assigning class labels through definitions of δ and w.

The k-nn algorithm is known to be a lazy-learning technique, which means that it
does not require a training procedure prior to the classification task. The induction takes
place during run-time and using training data samples that are presented explicitly. The
main computation in the learning and classification task is the scoring of training vectors
against an input vector in order to find the k nearest neighbours. The k-nn, therefore,
is also known as an example-based or case-based learning technique. It is a simple yet
effective method of classification that has been widely used in many applications.



2.4. Classification in Vector Spaces 63

However, the application of k-nn requires selecting the k value where it is dependent
on the distribution of the data is being classified, the distribution of training samples, and
the metric that is used to find the nearest neighbours. The value for k is usually selected by
a heuristic technique such as cross-validation. In general, larger values of k are believed
to reduce the effect of noise; however, this makes class boundaries less distinct. For small
values of k, the k-nn method is also known to be sensitive to the presence of noisy or
irrelevant data (Yang, 1999). In addition, when the number of training instances increases,
the performance of k-nn reduces. However, these limitations have been actively addressed
by a large number of research.

Besides the mathematical account given above, based on the application’s context,
there are several interpretations of the k-nn algorithm. In its simplest form, k-nn can be
seen as a ranking system in which a threshold is used for assigning a class label to an
input vector (e.g., Bustos and Navarro, 2004). In the context of distributional semantics,
however, the k-nn algorithm can be best explained by the substantial research efforts that
are often flagged by the term memory-based language processing (Daelemans and van den
Bosch, 2005)—that is, as described by Daelemans (1999), a union of the two tradition of
analogy-based language models in linguistics, and k-nn learning technique in artificial
intelligence.

As summarised in Daelemans and van den Bosch (2010), k-nn can be seen as a
similarity-based reasoning process in which the learning process is analogous to memor-
ising (i.e., storing) a set of examples. Whereas a number of learning techniques employ a
meta-language such as rules to construct an abstract representation of text data (known as
eager learning methods), k-nn relies directly on the text data to perform the classification
task. Hence, similar to the discussion in Chapter 1, k-nn offers an empiricist method of
classification. Training text samples are, thus, can be kept in their original format with no
alteration. As a result, it can be suggested that:

• the process of classification in k-nn is more intuitive than methods that use an ab-
stract representation of the training data;

• language exceptions and less frequent patterns, which are often ignored by a gener-
alised representation of the training data, can be handled effectively;

• even using a very small set of training examples, k-nn shows a reasonable general-
isation ability.

In the context of this thesis, the k-nn method is employed for two of its particular
characteristics:

• its plausible compatibility with the distributional hypothesis and its intuitive ex-
planation of the classification task;

• its memory-based learning strategy.

As explained above, the former characteristic introduces k-nn as a cognitively plausible
data-driven approach for similarity-based reasoning, whereas the second characteristics
make it exceptionally flexible and suitable for implementing an interactive learning al-
gorithm. No training process is required to develop a model and the examples can be

http://atmykitchen.info/phd/thesis/chapter-1.pdf#chapter.1


64 Chapter 2. Distributional Semantics and Vector Space Models

added or removed at anytime during the deployment of the method. Hence, the memory-
based learning is a simple yet effective approach for the iterative development of termin-
ological resources—in which the model can be updated as a user annotates and organises
terms. Lastly, the example-based classification method can be easily scaled out, for ex-
ample, with the help of MapReduce programming model—which is an important feature
in big text data analytics.

2.5 Chapter Summary
The discussion in this chapter started by giving an overview of the distributional hypo-
thesis and the vector space models of semantics, which form the theoretical basis for the
proposed methods in this thesis (i.e., Section 2.1). Vector spaces as an algebraic structure
are described in Section 2.2.1; Section 2.2.2 explained how these algebraic structures are
employed to model and interpret distributional properties of linguistic entities in various
contexts in order to capture meanings. In Section 2.2.3, this discussion was accompanied
by a survey of the employed context elements and types of semantic models that have
been employed in different text processing tasks; for example, to address problems in
applications such as information extraction and retrieval.

Processes in vector space models of semantics were a major part of the discussion
in this chapter (i.e., Section 2.3). The steps that are necessary to build a vector space
model are reviewed. These processes, from the vector space construction to the similarity
measurement process, were discussed in detail. Accordingly, Section 2.4 explained the
use of learning techniques in distributional semantic models, in which an emphasis was
put on the methods that employ the geometry of vectors in order to perform a classification
task. Particularly, in Section 2.4.1, the k-nearest neighbours algorithm, which will be
employed later in this thesis, was introduced.
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