HHU at SemEval-2017 Task 2:
Fast Hash-Based Embeddings for Semantic Word Similarity Assessment

Behrang Qasemizadeh
DFG SFB 991
Universitit Diisseldorf
Diisseldorf, Germany
zadeh@phil.hhu.de

Abstract

This paper describes the HHU system that
participated in Task 2 of SemEval 2017,
Multilingual and Cross-lingual Semantic
Word Similarity. We introduce our un-
supervised embedding learning technique
and describe how it was employed and
configured to address the problems of
monolingual and multilingual word sim-
ilarity measurement. This paper reports
from empirical evaluations on the bench-
mark provided by the task’s organizers.

1 Introduction

The goal of Task 2 of SemEval-2017 is to provide
a reliable benchmark for the evaluation of mono-
lingual and multilingual semantic representations
(Camacho-Collados et al., 2017). The proposed
evaluation benchmark goes beyond classic seman-
tic relatedness tests by providing both monolin-
gual and cross-lingual data sets that include mul-
tiword expressions, domain-specific terms, and
named entities for five languages. To measure ‘se-
mantic similarity’ between pairs of lexical items,
the HHU system uses a method that is based on a
derandomization of ‘random positive-only projec-
tions’ proposed by QasemiZadeh and Kallmeyer
(2016).

Word embedding techniques (i.e., using dis-
tributional frequencies to produce word vectors
of reduced dimensionality) are one of the most
popular approaches to semantic word similar-
ity problems. These methods are often ratio-
nalized using Harris’ Distributional Hypothesis
that words of similar linguistic properties appear
with/within a similar set of ‘contexts’ (Harris,
1954). For example, words of related meanings
co-occur with similar context words {cy,...cp}.
This hypothesis implies that if these context
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words are grouped randomly into m buckets, e.g.
{{er...cati, . {ey, .- - cn}m}, then co-related
words still co-occur with similar sets of buck-
ets. QasemiZadeh and Kallmeyer (2016) exploit
this assumption and propose random positive-only
projections for building word vectors directly at a
reduced dimensionality m. In this paper, we pro-
pose a derandomization of this method and a hash-
based technique for learning word embeddings. In
Section 2, we describe our method. In Section 3,
we report results obtained by applying this method
to the shared-task benchmark. Finally, we con-
clude in Section 4.

2 Method

Our method consists of two logical routines:
(a) a text skimmer to collect co-occurrence in-
formation; and (b) a hash-based encoder to
build low-dimensional vectors from collected co-
occurrences in (a). Evidently, these procedures
can be merged and ordered differently to meet re-
quirements of an application.

To build an m-dimensional embedding for an
entity w (such as a word or phrase) that co-occurs
with (or within) some context elements ¢ (result-
ing from the skimming routine), we take the fol-
lowing steps:

Algorithm 1 : Encoding Co-Occurrences
1: W= 6
2: for each c co-occurring with w do
3: d < abs(hash(c) $ m)

4: u_)’d f ’ll_jd + 1
return w

Here, wq is the dth component of . The hash
function assigns a hash code (e.g., an integer) to
each context element c. The abs function returns
the absolute value of its input number and % is the
modulus operator and it gives the remainder of the
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division of the generated hash code by the chosen
value m. We use the following hash function:'
int hash(byte[] key) {
int i = 0;
int hash = 0;
while (i != key.length) {
hash += key[i++];
hash += hash << 10;
hash 7= hash >> 6;
}
hash += hash << 3;
hash *= hash >> 11;
hash += hash << 15;
return hash;

}

Our choice for hash is motivated by its low col-
lision rate for short words (byte sequences) and
the closer resemblance of computed ds to an in-
dependent and identical distribution (i.i.d). It can
be verified that the procedure proposed above im-
plements a derandomization of QasemiZadeh and
Kallmeyer’s method: The generated modulus of
hash codes from context elements constitutes a
random positive-only projection matrix, and the
component-wise additions compute the multipli-
cation of this randomly generated matrix with the
original high-dimensional vectors.

2.1 Computing Similarities

Once ws are constructed, they are weighted by
the expected and marginal frequencies, e.g., us-
ing positive pointwise mutual information (PPMI)
(Church and Hanks, 1990; Turney, 2001). Let
W, «m (consisting of p row vectors w of dimen-
sionality m) be the set of embeddings in our model
(i.e., the output of Algorithm 1). The PPMI weight
for a component w,, in W is given by:

. Wy, XZ?: Z’m: Wij
ppmi(wgy) = max(0,log Zil wiyxl 25’;11“)1; )

For this task, however, we adopt cascaded PPMI
weightings: PPMI-weighted vectors are weighted
once more using the above-mentioned formula,
i.e., we compute ppmi(ppmi(W pxm)). We be-
lieve this cascaded weighting yields better results
by providing a well-balanced scaling of the origi-
nal PPMI weights. Note that the weighting pro-
cess is fast since it is carried out on vectors of
small dimensionality m.

Finally, we compute similarities between these
weighted vectors using a correlation measure.

"Designed by Bob Jenkins (2006); see http://www.
burtleburtle.net/bob/hash/doobs.html.

QasemiZadeh and Kallmeyer (2016) suggest Pear-
son’s r for PPMI weighted vectors. Later, in
QasemiZadeh et al. (2017), they suggest Good-
man and Kruskal’s v coefficient (Goodman and
Kruskal, 1954). To compute vy, concordant and
discordant pairs must be counted. Given any
pairs such as (z;,y;) and (x;,y;) from two m-
dimensional vectors Z and ¢ and the value v =
(x; — z;)(yi — y;), these two pairs are concor-
dant if v > 0 and discordant if v < 0. If v = O,
the pair is neither concordant nor discordant. Let
p and ¢ be the number of concordant and discor-
dant pairs, then v is given by (Chen and Popovich,
2002, p. 86):
_pr—a

p+a
In this paper, we suggest a new estimator based on
Lin’s information theoretic definition of similarity
(Lin, 1998):

v

. — 2% (ziyi) (1+log(24+@iy:))
simyi, = log( s ).
2.2 Extending the Method to Cross-Lingual

Tasks

The proposed method can also be employed in
a cross-lingual setting. However, this requires a
small dictionary (translation-memory) and an ad-
ditional pre-processing step.

In the pre-processing step, all pairs of lexical
items in the input dictionary must be first mapped
onto a common symbol space. Let’s assume that
the input dictionary consists of entries of the form
I — {t1,...,ty} (ie., L is a lexical item in the
source language which has a number of ¢; transla-
tions in the target language). To build the common
symbol space, we generate all possible (I, ;) tu-
ples and we assign them unique identifiers—i.e.,
(I,t;) — s . Finally, these tuples and their as-
signed identifiers are flattened in a symbol table
t: for instance, if ([, ¢;) are assigned to the unique
identifier s, then the entries of ([, s) and (¢;, s) are
stored in this table . Note that the mappings in ¢
are not necessarily one-to-one.

To build cross-lingual vectors for lexical items
w in any of the input languages, similar to the
monolingual setting, input corpora are scanned to
collect context elements c. However, only those
context elements that can be found in ¢ are en-
coded into models. If ¢ contains an identifier sym-
bol s for a given context element c, then s is passed
to Algorithm 1 to update vector .


http://www.burtleburtle.net/bob/hash/doobs.html
http://www.burtleburtle.net/bob/hash/doobs.html

3 Reports from Empirical Evaluation

3.1 General Settings

As input, we use the Wikipedia text corpora pro-
vided by the task organizers.”> In our reports,
we include results from the sense-based NASARI
vectors (i.e., the baseline introduced by the or-
ganizers): 300-dimensional embeddings obtained
using a hybrid approach (Camacho-Collados et al.,
2016). The evaluation metric is the harmonic
mean (H) of Pearson’s r and Spearman p corre-
lations between the test datasets (i.e., gold data
constructed from scores assigned by humans to
word pairs) and the corresponding system gener-
ated ones.

We treat multi-word expressions similar to
single-token words. Given a list of tokens, instead
of collecting co-occurrence information only for
single tokens, we extend our scan of input cor-
pora to contiguous n-gram sequences of tokens
for which n is decided by the maximum length
of items in the evaluation test sets. In effect, we
limit the active vocabulary of our system and col-
lect co-occurrence information only for those lex-
ical items in the task’s test sets.

3.2 Monolingual Subtask

To collect co-occurrence information from input
corpora, given the small size of input corpora, we
adapt a greedy approach. Input corpora are read
line by line; if a lexical item w; in our target vo-
cabulary appears in a line at span i to j, we update
wy by passing the following items as context ele-
ment to Algorithm 1:

Feature Sets:

e The whole line (as one unit): this is done
to capture information about possible co-
occurrences of test lexical items within a
large context (such as done in word-by-
document models).

e All the tokens from position 7 — 20 to 7 +
20 (i.e., including w,), i.e., the classic sliding
context window. We include w; to enforce
similarity between a pair of multiword lexical
items of similar constituent tokens.

e All n-grams (n € {3,4}) generated from
each of the tokens appearing in the above
sliding context window: this is done to

“https://sites.google.com/site/rmyeid/projects/polyglot

Lang| » p H | m Weighting ~ Similarity RUN
FA |.541 .585 .562|2000 Cascaded-PPMI r 1

FA |.606 .601 .604|2500 Cascaded-PPMI  simy;, 2
EN | .71 .699 .704|2500 Cascaded-PPMI  simy;, 1
EN |.656 .697 .676|2500 Cascaded-PPMI r 2

Table 1: Results for our official submissions.

capture information about the morphological
structure of the context words.

Table 1 summarizes the results and configura-
tions that we have used in our official submis-
sions. For Farsi, for the first run, we built vectors
of dimension m = 2000, weighted them using
cascaded-PPMI (see Section 2.1) and used Pear-
son’s r as a similarity measure. Evaluated by the
organisers, this resulted in » = 0.541, p = 0.585,
and the official score of H = 0.562. In the second
run, however, we built vectors of dimensionality
m = 2500 and after cascaded-PPMI weighting,
similarities were computed using simy;,,. This re-
sulted in scores of r = 0.606, p = 0.601, and
H = 0.604. To choose these configurations, we
relied on the trial data as well as resources intro-
duce in Camacho-Collados et al. (2015). For En-
glish, we observed that adding n-gram features de-
teriorates results; hence, we removed this set of
features from our model of dimensionality m =
2500. In both runs, we used cascaded-PPMI. As
a similarity measure, we used simy;,, and Pearson’s
r in the first and second run, respectively. This
produced a score of r = 0.71, p = 0.699, and
H = 0.704 for the first run, and r = 0.656,
p = 0.697, and H = 0.676 over the second run.
Note that for both languages, we could build any
vectors for a number lexical items since they did
not occur in the input corpora (see the last column
of Table 2 for details).

3.2.1 Extended Evaluations

While our official submissions are limited to En-
glish and Farsi, to provide a better understanding
of the method’s performance, we provide results
for all the five languages in the monolingual sub-
task. To build models, we use the feature sets de-
scribed in the previous section. The remaining
hyper-parameter of our method is m (the dimen-
sionality of models); we report results for m &
{300, 700,2000}. Results obtained using various
combinations of weighting techniques and similar-



Hash Method - WPPMI - SimPearson
Lang Baseline Dim =300 Dim =700 Dim = 2000 M
r p H r p H r P H r p H

DE | 0513 0514 0514 | 0439 0436 0438 | 0537 0.574 0.5557 | 0.603 0.655 0.628T | 16
EN | 0.683 0.681 0.682 || 0.428 0.474 0.450 | 0.535 0.598 0.564 | 0.614 0.652 0.632 3
ES | 0.602 0.597 0.600 | 0.512 0.568 0.539 | 0.576 0.644 0.608T | 0.665 0.719 0.6917" 7
FA | 0412 0398 0.405 || 0475 0496 04867 || 0.512 0.535 0.5237 || 0.538 0.569 0.5537 | 25
IT | 0597 0.594 0.596 || 0.469 0.503 0.485 || 0.537 0.589 0.562 || 0.616 0.674 0.6437 | 12

Table 2: Results for vectors

of various dimensionality (denoted by dim), and when using PPMI for

weighting and Pearson’s r for measuring similarity between them. H denotes the harmonic mean of r
and p (i.e., the task’s official score). #M is the number of lexical items which have not occurred in our
input corpora; for pairs containing these items, we use O as a default value for similarity. Those settings
that yield better results than the baseline are marked using 1.

Table 3: Method’s performance when using PPMI
for weighting and Goodman and Kruskal’s ~ for
a similarity measurement. This combination gives
the best performance for models of small dimen-
sionality such as m = 300.

Lang Dim =300 Dim = 700 Dim = 2000
roop H roop H roop H
DE [.392 377 .384 |[.511 .515 .513 |[.616 .624 .620 T
EN |.435 436 .436 |.548 .553 .551 ||.632 .630 .631
ES |.506 .505 .506 |.583 .578 .580 |.673 .683 .678 T
FA |.477 501 .488T|.518 .540 .529 1||.551 573 562"
IT |.445 443 444 |.532 534 533 |.643 .650 .646 "

Table 4: Method’s performance when using the
combination of PPMI and simy;,,.

ity measure are summarized in Table 2 to 7.3
Disregarding the choice of weighting technique
and similarity measure, an increase in m often pro-
duces better results, but at the expense of higher
computational cost. In addition, as suggested in
Section 2.1, by comparing results between Ta-
ble 2 to 4 and Table 5 to 7, we observe that us-
ing cascaded-PPMI weighting instead of simple
PPMI weighting often yields better scores. The
only exception is when m is small (e.g., m = 300)

3Slight improvements in results for Farsi are due to
homogenizing character encoding: Zero-width non-joiner
characters (U+200c) are replaced by the space character
(U+0020); the Arabic letter Kaf (U+0643) is replaced by the
Farsi letter Kaf U+06A9, and the Arabic letter Yeh (U+064A)
is replaced by the Farsi letter Yeh (U+FBFC).

Lang Dim =300 Dim = 700 Dim = 2000
roop H roop H roop H
DE [.576 .577 .576 T||.609 .609 .609 T|.619 .617 .618 T Lan Dim =300 Dim = 700 Dim = 2000
EN |.633 .627 .630 |.659 .653 .656 |.644 .633 .638 g p H r p H r p H
ES |.660 .659 .659T|.675 .670 .6731||.669 .669 .669 T DE |.486 .486 .486 |/.587 .626 .606 T|/.630 .675 .651 T
FA |.449 439 444 7| 468 458 .4631||.517 506 5121 EN |.519 .538 .528 ||.608 .647 .627 ||.639 .668 .653
IT |.609 .601 .605T|.617 .611 .614T|.618 .612 .615 T ES |.572 .626 .598 |.646 .695 .670 T|.683 .721 .701 T
FA |.507 .521 .514T|.535 565 .550 T||.552 .595 .573 T
IT |.516 .538 .527 ||.597 .638 .617 T||.626 .670 .647 T

Table 5: Method’s performance when using the
combination of cascaded-PPMI and Pearson’s r.

Lang Dim =300 Dim = 700 Dim = 2000
roop H roop H rop H
DE |.551 .556 .553 T|[.630 .633 .631T||.648 .652 .650 T
EN |.608 .603 .606 ||.659 .653 .656 ||.661 .648 .655
ES |.647 .650 .649 T|.692 .688 .690 T||.688 .684 .686 T
FA |.500 .487 .493T|.528 517 .5231||.559 .551 .555T
IT |.593 .598 .595 |.640 .633 .636 T|.637 .631 .634 T
Table 6: Method’s performance when using the
combination of cascaded-PPMI and ~.
Lang Dim =300 Dim = 700 Dim = 2000
roop H roop H rop H
DE |.434 454 444 |[.597 .614 .605 T||.665 .686 .675T
EN |.497 508 .502 ||.641 .644 .643 |.684 .677 .680
ES |.575 .589 .582 |.677 .683 .680 T||.727 .733 .730 T
FA |.537 .557 .547 1| .582 .592 .587 1||.589 .605 .597 T
IT |.513 .513 .513 |.634 .641 .637 T|.690 .693 .692 T

Table 7: Method’s performance for the combina-
tion of cascaded-PPMI and sim;;,: This combina-
tion proves to provide the best results for high-
dimensional models.



Lang r p H RUN
EN-FA | 0.519 0.492 0.505 | Baseline
EN-FA | 0485 0.544 0.513 1
EN-FA | 0429 0.582 0.494 2

Table 8: Results for EN-FA detest.

and ~ is used to measure similarities. For small
300, this combination of PPMI weight-
ing and v gives the best performance (Table 3);
we witness that for mm = 300, this combination
also gives the best results for Camacho-Collados
et al.’s data sets.

m =

3.3 Cross-Lingual Subtask

We applied the methodology described in Sec-
tion 2.2 to build cross-lingual embeddings for the
pair emphEnglish and Farsi. To build the common
symbol space, we extracted an English-to-Farsi
translation dictionary from the English Wiktionary
dump of January 2017, containing translations for
7500 lexical items in English. These 7500 entries
were converted to a symbol table ¢ of size 17760.
We then augmented this table with Wikipedia’s ti-
tle translations. As a result, the number of entries
in ¢ increased to 1,299,770.

For each w in the test data set, we collected
co-occurrences from a context window (extended
20 tokens at each side of w) for both words and
multiword expressions that appear in ¢. Note that
the sole input to our method was unaligned text
from the English and Farsi Wikipedia corpus (sim-
ilar to the monolingual setting). In both runs, we
used vectors of dimensionality m = 3000 and the
proposed sim;;, measure to compute similarities
between vectors. To weight vectors, in the first
run, we used cascaded-PPMI while we used sim-
ple PPMI for the second run. Table 8 provides a
summary of the method’s performance. Surpris-
ingly, our simple methodology performs at least
as well as the baseline technique.

Results reported in Table 8 can be easily im-
proved by feeding in additional input, particularly
parallel corpora. For instance, we observe that us-
ing the Open Subtitles corpus in addition to the
Wikipedia corpus can enhance the results for the
combination of cascaded-PPMI and sim;;, (Run 1)
from H = 0.505 to 0.575.

4 Conclusion

This paper described the methodology behind the
HHU system that participated in the SemEval

2017 shared task on semantic word similarity. The
proposed technique uses a hash-based algorithm
for building embeddings. The method is fast
and simple, and it demands only a small amount
of computational resources to build a model.
As shown by empirical evaluations, our method
shows acceptable performance in semantic simi-
larity tasks. Our code is available for download
(https://user.phil.hhu.de/~zadeh/
material/hash-vectors/) in order to
replicate the results reported in this paper.
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