

CloniZER Spell Checker

Adaptive, Language Independent Spell Checker

Loghman Barari1 Behrang QasemiZadeh1
 Digital Clone, Speech and Language Department,

6th floor, No 880, College cross, Enqelab Ave, Tehran, Iran
[Barari, QasemiZadeh]@DigitalClone.net,

http://www.digitalclone.net

Abstract
CloniZER spell checker is an adaptive, language
independent and 'built-in error pattern free' spell checker
tool which is based on 'Ternary Search Tree' data
structure. It suggests the proper form of the misspelled
words using nondeterministic traverse. In other words the
problem of spell checking is addressed by traverse a tree
with variable weighted edges. The proposed method
learns media error pattern and improves its suggestions as
time goes by. Instead of using expert knowledge for error
pattern modelling, the proposed algorithm learns error
pattern by interaction with user. 1

Keywords: Spell Checking, Error Pattern, Learning and
Adaptation, Lexicon, Ternary Search Tree (TST).

1. Introduction
Nowadays, having general access to Internet as a
universal phenomenon, electronic texts development and
using the text based query interfaces have made the
existence of assisting tools for text manipulation
inevitable. For example, about 10 to 12 percent of the
queries entered in search engines, have dictation errors
[1]. Spell Checker have a vast application zone, such as
internet search improvement [2][3], correction of errors
caused by OCR 2 [4][5], tools for text editors, Pre-
processors for natural language processing, speech
recognition, and the pen-based computer interfaces.
 There are two possibilities for errors: namely non-
word error and real-word error [6]. Real-word error occur
while the usage of word, in relation with the previous or
next word, or, sentence structure and type of the text
(Scientific, reportorial, etc) is not appropriate [6][7].
Real-word error detection is in need of high level
semantic information, type of word ambiguity detection,
and its multiple applications, which is not the purpose of
this document. The focus, here, is mainly on the non-
word error or misspelling. Misspells are detected when

1 Digital Clone Corp. & Iran University of Science and
Technology
2 Optical Character Recognition

the specific word does not belong to the language words
domain [6]. The duty of spell checker is to detect the
position of errors and suggests the best similar word (s).
 In order to detect the errors, it is necessary to model
the related knowledge of language words for the system,
in either an explicit (Lexicon) [8] [9] [10] [11] [12] [13]
[14] or implicit way (statistical models) [5]. After error
detection, it is necessary to specify possible types of
errors and their correction methods for the system. This is
generally accomplished by common errors patterns
modeling.
 Knowledge representation of words of a language is
one of the significant issues in each system related to
NLP 3 . Moreover, knowledge representation of words
determines the general approaches in system design and
architecture. Lexicon’s architecture can individually
contain the implicit knowledge of the language. In
general, computerizing the dictionary consists of
parameters such as the size of dictionary [11], flexibility,
the ability of generating all possible combinations [14],
dictionary file structure, dictionary’s segmentation, and
word access’ techniques. [11]
 In some researches, Lexicons and their
representations have been studied in details [11] [14].
Some researches have focused only on the Lexicons
containing stems of words, and inflection rules and
morphology have been utilized for the detection of the
rest of words [4][9][10][12], versus others, where whole
words of language have been presented in the Lexicon
and no lexical analysis is being utilized [8][11][14][15].
The former approach is more complex, comparing to the
latter one but it has a good measure of compression for
knowledge representation. Another important issue in
designing the lexicon is the search method and access to
the words. The most common method is using
dictionaries with hash-tables structure [3] [13], which its
difficulties can be named as proper definition of key for
addressing, weak flexibility, and no compression of
lexicon. N-gram is one of the frequently used methods
for OCR which the most important issue of this method is

3 Natural Language Processing

the formation a suitable graph of unprocessed text
information [5]. The other common method, for Lexicon
representation, is utilization of a tree based data structure
[2].
 Many researches have been done in order to model
the error pattern and specifying its parameters. There are
different categories for error patterns, based on the source
of errors. These categories are based on the structure of
each language, pronunciation similarities [13] and
Typography (dictation similarity) [16] user's habits [12]
and etc. Apart from the mentioned categories, the
achieved patterns can function as a guide to detect error’s
place and fix it. The main issue, here, is the dependency
of error pattern to the language in which the system is
running. Error pattern detection, regarding its dependence
on language and media in which it use, is though, time
consuming, and is usually in need of language’s experts,
although, in most cases, these models are very accurate
and efficient. Accuracy of the achieved error model has a
straight effect on system’s efficiency.
 The cause of usual dictation errors can be categorized
as follow: (Figure 1) [2] [6]

- Substitution Error: Using a letter instead of
the other.

- Deletion Error: Unintended elimination of one
or more letters.

- Insertion Error: Unintended insertion of a
letter in a word.

- Transposition Error: Transposition of two
adjacent letters.

- Split Word Error: Attaching two correct
separate words.

Figure 1. Usual Dictation Errors

 Thus, each system’s suggestion for a wrong word is
derived from applying one or more of these changes
mentioned above on the input string, although in the
current spell checker systems, not all the above errors are
covered. According to what was previously stated, in
order to propose the proper suggestion, the spell checker
faces a vast search space, where only one word, among
the suggested ones, should be selected as the proper word.
In spell checker system, one of the important goals is to
limit the search space, with the help of error pattern
models, in order to suggest the best similar word, with
the optimal search and least computational cost [16].
 In order to achieve the main goal of spell checking,
which is error detection and correction; it is needed to
store a proper integration between Lexicon and the
structure of error pattern models.
 Another important issue in designing a spell checker
system is whether to have an interaction with user or not.
In latest systems, it is assumed that spell checker is used

in a user interactive environment [13][15][16], where
system prepares list of suggested words from where the
user can make the final choice. In some others, according
to the application, for example as a post-processor for an
OCR system or Speech to Text system, spell checker
proposes only one suggestion, without any interaction
with user [4][5][8].
 The remainder of the paper is organized as follow:
Section 2 reviews some related works, in Section 3,
proposed method has been introduced, the. Experimental
results are shown in section 4. Finally Section 5 points
our conclusion.

2. Related Works
Spell checking has a long history in Computer science
[17], and nowadays spell checking system is as an
essential part for almost all application software [14].
The proposed methods in these systems consist of Edition
Distance (ED) [2][13][16], rule-based techniques,
probability techniques [6] [15] and n-grams models
[4][5], expert systems [14], similarity key methods [13],
and hybrid methods [6][8] [10]. In most of these methods,
the first step is to prepare a language-related lexicon and
error pattern extracting. In next step, error patterns will
be modeled, in order to detect the errors position and
proposing the suitable error-removal solution. The output
of such systems is usually a list of most similar proper
words, based on error models [6] [10] [15] [16].
 The algorithms, based on the least ED, normally
define the ED with a determined function. The word with
the least ED with the given word will be picked up as a
winner and system will suggest the winner word [6] [16].
For example, a very simple ED function can be defined
by appropriating weight to each change that must be
applied, in order to alter the word to its correct mode,
such as characters Insertion or deletion and simple
mathematic operations [6][13]. In this method, ED
definition, such as the number of operations and their
weight will have a direct effect on the algorithm accuracy.
In other words, the error pattern is modeled by the
distance measure function parameters. In these methods,
the accuracy and acceleration of the algorithms depends
on the definition of the ED, and can be flexible,
depending on its definition.
 Similarity key methods try to propose a map between
word and key, according to its features and heavily
depended on error pattern model [10] such as SoundEX
systems and Metaphone algorithms [13]. In this method,
‘Hashing’ structure is often used to propose Lexicon
knowledge, and map function has also the role of
addressing [13]. In other words, the parameters of map
function are used for error pattern modeling. Because of
hash table structure, similarity key methods accuracy and
speed depends on key's definition. This method has
suitable and high accuracy when the error pattern model
is properly defined.
 In N-gram based methods, the occurrence probability
of characters stream of a word is calculated. If “s” is a
character sequence, and hi is the whole history
information before ith word “wi”, then the probability of
“s” will be calculated by [18]:

Now, if this history is limited to n-1 characters, (1) will
be changed to (2):

 Lexicon knowledge in n-gram methods is implicit and
tries to model the words of language statistically. This
method is usually used as a post-processor in OCR [4] [5].
 In [12], an adaptive architecture is described for spell
checker. The system will adapt itself with user, using
different order of words in the suggested words list. The
error patterns of language are predefined in different
knowledge bases. Actually the error pattern model of the
system is fixed and it can not be changed.

3. CloniZER Spell Checker
CloniZER spell checker is an adaptive, language
independent and 'built-in error pattern free' spell checking
tool, which is based on 'Ternary Search Tree' (TST) data
structure. it suggests the proper form of the misspelled
words using variable cost of traverse. The proposed
method learns media error pattern and improves its
results as time goes by. Instead of using expert
knowledge for error pattern modeling, this method learns
error pattern by interaction with user.
 Figure 2 is the general scheme of the proposed
system. Proposed system consists of five parts: Spell
Checking Module (SCM), Lexicon, Cost Of Transition
(COT), Learning and Adaptation module (LAM) and
finally a user. SCM's role is to detect the errors and
propose proper suggestions. The role of LAM is to learn
media error pattern by interaction with user. Error pattern
has been implicitly modeled in COT. Lexicon contains
words of language in TST data structure. Furthermore,
two threshold limits are used in order to control and
restrict the search space size in proper word suggestion.
“Global Threshold” limits the number of suggested
words in a single suggestion entry, while “Local
Threshold” makes a limitation for each alteration in
suggested word or words components of a single
suggestion entry.

Figure 2. CloniZER Spell Checker Modules

 The input stream is received by Spell Checker. If the
word does not exist in Lexicon, words with least path
cost in TST, based on COT, would be suggested. List of

extracted words with traverse path in TST will be sorted
by total path cost and hold in suggested list and sent to
user. Due to user selection, input stream would be added
as a new word to Lexicon or COT would be updated.
Figure 2 explained data flow diagram between these
modules.
 Each system’s component will be explained in the
following in details.

3.1 Lexicon
Lexicon represents the lexicon knowledge of language in
TST data structure with weighted edges. The TST has
been first introduced in [19]. This data structure
compress data with same prefix and frequent prefix will
be saved only once. In TST data structure, in each node
of tree, a character will be saved. Each node points to
three other nodes in left, middle and right. The left
pointer, points to the letter with smaller code, while the
right pointer points to a letter with bigger code. The
middle pointer points to the next character in input
stream. (Figure 3) The tree traverse in left or right nodes
will not because the traverse in input stream.
 Modified TST structure in CloniZER Spell Checker
contains the addition of weight to edge of tree and a flag
which displays the end of word. The weight related to
each edge are categorized and has been saved in an
individual data structure, named “Cost Of Transition”, in
order to decrease the volume of data structure and the
facility in adaptation process. Additions of cost to edge of
the tree cause the change in traverse tree algorithm,
which has changed the traverse from a classic procedure
to a non deterministic one.

Figure 3. Lexicon and COT

3.2 Cost of Transition
As mentioned above, all similar transitions have similar
costs, which save in a matrix based data structure. The
edges of tree are categorized due to their starting and
ending characters. Each row shows the starting character
and each column shows the ending character, value of
matrix cells hold weight of the specified edge, in the
other words cost of transition between two characters.
 In order to add the deletion and inserting operation
ability and adding learning ability for them, a “Null”
column and row is added to the COT matrix to save the
cost of deletion and Insertion. For example, for Persian,
COT matrix is a 40*40 square one which 32 of rows and
columns are labeled with Persian letters and the rest are
labeled with other common symbols that are used in
Persian writings. Figure 3 reveals a part of this matrix. At
the beginning, the entire matrix cells have the value of
100.

() () () ()2...
1

121
1

∏∏
=

−+−+−
=

==
t

i
ininii

t

i
ii wwwwPhwPsP

() () () ()1...
1

21 ∏
=

==
t

i
iit hwPwwwPsP

3.3 Spell Checking
As already mentioned, according to the specified
architecture, the spell checking process has been
transformed into Non-deterministic traverse of a tree with
weighted edges. In other words the problem of spell
checking is transformed to the problem of traversing a
weighted tree with minimum total weight. With the help
of tree traverse, Spell Checking module provides user a
list of suggested correct words. The search process, in
order to present the suggestions list, is as following:
A. Transposition Error:

a. If the stored character in current node is the
same as the character in the input string, it
will be move pointer on input string and
traversed on tree. Otherwise, current
character in input stream will be
transformed into the stored character in
tree's current nodes, according to the
specified cost in COT, and this
transformation and its related cost will be
held.

b. In case the current nod is at the end of the
word, the suggested word will be held, and
by returning to the root of tree, it will try to
traverse the rest of the string, with this
condition that the sum of implemented costs
does not cross the "Local Threshold" and
"Global Threshold".

c. If the current node is not at the end of the
word, the traversal of remainder of the
stream will be processed from the middle
pointer.

B. Substitution Error:
a. If the stored character in the current node is

different from the current character in input
string,

i. If the relocation of the input stream
current character with the next
character is possible and no
relocation has taken place, this
relocation will take place, and the
remainder of the tree would be
traversed.

C. Insertion Error:
a. If the possibility of the transformation of

input stream's current character into a null
character, according to the exploited cost
from COT and its comparing with "Local
Threshold” and "Global Threshold" exists,
the current character will be deleted and the
tree traverse from the current node would
be continued, according to the input
stream's next character.

D. Deletion Error:
a. If the possibility of the transformation of

null character, into current node's character,
according to the exploited cost from COT
matrix and its comparing with "Local
Threshold" and "Global threshold" exists,
the current node's character will be inserted
and the tree traverse will be continued
according to input stream's current character
and from the middle node.

E. Cover other possibilities:
a. The mentioned traverse will be examined

for the left and right nodes. This operation
will be continued until reaching the end of
the input stream or an invalid node.

3.4 Learning and Adaptation
The role of LAM is to modify the cost of transition and
the weight of edges of tree. On the other words the role
of LAM is to learn media error pattern (such as user’s
habit for dynamic media or OCR problems for static
media and so on) and to add new words to Lexicon. If
input string does not exist in Lexicon, it would be
detected as a misspelled word and could be added to
Lexicon by standard insert function of TST data structure.
If user selects one of suggested words of system, this
choice causes the change in cost values and weights of
tree edges in order to decrease the cost of selected
suggestion and increase the cost of other suggestions for
same misspell word. Cost values in COT will be
calculated by the following formula if the user's selection
is not the first suggestion in the list:

Where α is the learning rate (0.1>α >0), and index is the
number of suggestion in suggested list. One suggestion
for α is (4):

Where LSL is the length of final suggestion list.
 As mentioned before, according to (3.1) if user
selected word is not in top of list, all cost for traversing
tree to reach this suggestion string would be reduced
according to its position in the suggestion list; in other
words when index of selected words tend to bottom of
list its related cost would strongly be reduced, so that
learn the error pattern be faster. In other hand, for miss-
suggestion string, their cost would be increased according
to their index in list. Cost of miss-suggestion in top of list
strongly increased in comparing to miss-suggestion in
bottom of list.
 For practical implementation, it’s better to bound cost
of transition value; here it is limited to (5~100).

3.5 Thresholds
Another important issue in CloniZER spell checker is
Local and Global Thresholds which bounded TST
traverse search space for extracting similar words. Local
Threshold limits search depth and Global Threshold
prevent from generating unsuitable consequence of words.
 Local threshold definition is based on the length of
each suggested word. Global threshold definition is based
on the length of input string and the number of words in
each suggestion entry. If the length of suggested words
is shown by Lsuggest and the length of input string is shown

()41*1.0
SLL

=α

() () ()

() () ()3
2.31,

1.31,

⎪⎩

⎪
⎨
⎧

≠⎟
⎠
⎞

⎜
⎝
⎛ +∗

=∗−∗

selectedindex
index

CCCOT

selectedindexindexCCCOT

oldji

oldji

α
α

=),(ji CCCOT

by Linput and Nwords is the number of words in suggestion
entry then a simple formula for Local and Global
thresholds can be defined as follow: (5), (6)

Where λ is Maximum allowed dissimilarity rate for

bounding the search space and γ is suggest word count
limitation rate (γ>1).

 When λ tends to be the maximum cost, local
threshold, search space, process cost and the number of
suggestions will be grater, vice versa. According to our
test, simple assumption for λ could be 30% of maximum
cost.

γ is bounded the search space in other way. In other
words, γ is acceptation rate and it rejects suggestions
which cost of new suggestions is too much as best later
found suggestion. According to our test, the value more
than 2 for γ has no effect on global threshold.

4. Experimental Result
Unfortunately there is no standard database for Persian
spell checking evaluation. In order to test the system, a
data set has been prepared from two different sources:
(Table 1)
1. The incorrect words captured from students' dictation

notebooks at forth and fifth grade of primary school
since January 2005 until March 2005.

2. The incorrect typed words gathered from type centers
since October 2004 until February 2005.

Test Train Kind Of Errors
83 226 Complex Error
12932817 Insertion/Deletion/Substitution
307 688 Split Word
85 96 Transposition
17683827 Total Number Of Words

Table 1. Persian Misspell Word Database

 There are 5595 misspelled words and their corrected
forms in database. Database has been randomly divided
into two parts: one for training and the other for system
testing. Training set contains 3827 words and Test set has
1768 entry. Table1 shows the number and Type of errors
in each part. Data set is available at
http://www.digitalclone.net/localization/spellchecker.
Table 2 shows examples for every type of errors in
CloniZER Spell Checker Data Set with their translation.

The norm of system's precision will be calculated
according to the formula (7). The presented formula for
precision, is different from its classic form, regard the
importance of word's rate in the suggested words' list.

Hear "N" stands for the total number of words in
test/train set, "wi" indicates the ith word in suggested
words list and "SuggestNowi" is the selected word's index
in the suggestion list for the word number "i" in the
test/train set.

TranslationCorrect

Form
Misspell Error Type

Descriptiveترسيمی
/trsimi/

 ترمسي
/trmsi/

Complex

Advantageمزيت
/mzit/

 مريت
/mrit/

Substitution

Obligatoryالزامي
alzami

 لزامي
/lzami/

Deletion

Extraction استخراج
astKraj

 استهخراج
asthKraj

Insertion

is specifiedمشخص شد
/mSKs Sd/

 مشخصشد
/mSKsSd/

Split Word

Moveable متحرك
/mthrk/

 محترك
/mhtrk/

Transposition

Table 2. Samples of some misspell words in CloneiZER Spell

Checker Data Set

 The lexicon which is used contains more than 40,000
common Persian words which are extracted from Shargh4
online newspaper from April 2004 up to September 2004.
 At first, COT matrix cells are initiated by 100 and for
simplicity we consider LSL set to 10 as fixed value.
α ,the learning rate, is set to 0.01 according to (4). Also λ,
Maximum allowed dissimilarity rate, and γ, suggest word
count limitation rate, are set to 35 and 1.5.

Auto Select

0

10

20

30

40
50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21

Iteration

Train
Test

Figure 4. Auto-Select Precision

 After each iteration, the system response on test set is
shown in Table2 and Table3. As figure 4 and 5 shows,
since the errors' sources are various, ever since iteration
15, the change in learning amount is not noticeable. In
other words, error model learning, itself, results in
appearing other errors in the whole database, although it
can cause improvement in some other errors.

4 www.SharghNewspaper.com

()
()() ()5

*, suggestsinput

suggest

MinLholdLocalThersMinimum

LsholdGlobalTher

γ

=

()
()

()
() ()6

exp
ln

2ln2 1−−∗⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧ <

∗

=

wordsN

suggest

suggest

suggest

otherwiseL
L

LholdLocalThers

λ

()7

0
10111

*10
Pr

⎩
⎨
⎧ ≤≤−

=

= ∑

Otherwise
SuggestNoSuggestNo

Rank

N
Rankecision

ii ww
i

N

i

i

 Figure 6 displays the number of words which system
failed in generating any suggested word for. As
previously mentioned, ever since iteration 15, suggestion
learning for some of words results in system's inability in
word suggestion, for some of the other words which it
was previously able to provide a suggestion list for them.

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21

Iteration

Pr
ec

is
io

n

Train
Test

Figure 5. System Precision (Percentage/Iteration No.)

Not Suggested

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21

Iteration

Pr
ec

en
ta

ge

Train Set

Test Set

Figure 6. No Suggestion Precentage (Precentage/Iteration No.)

5. Conclusion
Popper definition of media error pattern is one of the
most important issues in spell checking problem. Also,
tuning or adaptation of the defined error pattern has an
important role. Therefore, most of proposed spell
checkers need a lot of modifications to apply in another
language or application such as pre-processing.
 In this paper, we introduce a novel language
independent and 'built-in error pattern free' system, for
spell checking; in other words we proposed a variable
error pattern model which can learn the media error
pattern in contrast to other algorithms. It learns error
pattern with some sample from language or media. Our
proposed method can adapt and tune itself by interactions
by user or outer media and it improves its suggestion list
as time goes by.
 In CloniZER spell checker system, adding a new
language is equal to adding a lexicon and some uniform
sample for learning. The system will extract the common
error patterns without the help of expert. Briefly, the
proposed approach has more flexibility, more accuracy,
data compression rate, and reliability with comparing to
other proposed methods. However, our method is

sensitive to media, but it shown that it has an acceptable
result for auto-selection problems.

6. References
[1] H. Dalianis. “Evaluating a spelling support in a search

engine” In Proceedings of NLDB-2002, the 7th
International Workshop on the Applications of
Natural Language to Information Systems, June 2002.

[2] Bruno Martins, Mário J. Silva, “Spelling Correction
for Search Engine Queries”, EsTAL, pp. 372-383,
2004.

[3] Mansour Sarr, "Improving Precision and Recall Using
a Spellchecker in a Search Engine", Master’s Thesis
in Computer Science, Stockholm University, 2004.

[4] Sait Ulaş Korkmaz, G. Kırçiçeği Y. Akıncı, Volkan
Atalay “A Character Recognizer for Turkish
Language”, Proceedings of the Seventh International
Conference on Document Analysis and Recognition
(ICDAR), IEEE, 2003.

[5] Li Zhuang, TaBao, Xiaoyan Zhu, Chunheng Wang,
Satoshi Naoi "A Chinese OCR Spelling Check
Approach Based on Statistical Language Models",
International Conference on Systems, Man and
Cybernetics, Hague, Netherlands, pp. 4727-4732,
IEEE, Oct. 2004.

[6] Bidyut Baran Chaudhuri “Reversed word dictionary
and phonetically similar word grouping based spell-
checker to Bangla text”, Indian statistical Institute,
Kolkata, India, 2000.

[7] Filip Ginter, Jorma Boberg, Jouni J¨arvinen, Tapio
Salakoski, “New Techniques for Disambiguation in
Natural Language and Their Application to Biological
Text”, Journal of Machine Learning Research 5, pp.
605-621, 2004.

[8] Dustin Boswell, “Language Models for Spelling
Correction”, CSE 256, Spring 2004.

[9] Johan Carlberger Rickard, Domeij Viggo Kann Ola
Knutsson, "A Swedish Grammar Checker",
Association for Computational Linguistics, 2000.

[10] T Dhanabalan, Ranjani Parthasarathi and T.V.
Geetha, "Tamil Spell Checker", Sixth Tamil Internet
2003 Conference, Chennai, Tamilnadu, India, August
22-24 2003.

[11] Boubaker Meddeb Hamrouni, “Logic
compression of dictionaries for multilingual spelling
checkers”, Proceedings of the 15th conference on
Computational linguistics, Kyoto, Japan, August 05-
09 1994.

[12] Menno van Zaanen, Gerhard van Huyssteen,
“Improving a Spelling Checker for Afrikaans”,
Language and Computers, Publisher Rodopi, ISSN
0921-5034, vol. 47, no. 1, pp. 143-156, August 2003.

[13] Arif Billah Al-Mahmud Abdullah, Ashfaq
Rahman, “A Generic Spell Checker Engine for South
Asian Languages” , IASTED 2003, November 3-5
2003

[14] Sandor Dembitz, Petar Knezevic, Mladen Sokele
“Developing a Spell Checker as an Expert System”,
Journal of Computing and Information Technology -
CIT 11, pp. 285–291, 2004.

[15] Deepak Seth, Mieczyslaw M. Kokar: SSCS: A
Smart Spell Checker System Implementation Using

Adaptive Software Architecture. IWSAS, pp. 187-197,
2001.

[16] Per-Ola Kristensson, Shumin Zhai, “Relaxing
Stylus Typing Precision by Geometric Pattern
Matching”, ACM Conference on Intelligent User
Interfaces (Proc. IUI 2005), ACM Press, pp. 151-158,
2005.

[17] K. Kukich, “Techniques for automatically
correcting words in text“, ACM Computing Surveys,
24(4):377.440, 1992.

[18] Gerasimos Potamianos, Frederick Jelinek, “A
Study of n-gram and decision tree letter language
modeling methods”, Speech Communication 24, pp.
171-192, 1998.

[19] Jon L. Bentley, Robert Sedgewick, “Fast
algorithms for sorting and searching strings”,
Proceedings of the eighth Annual acm–siam
Symposium on Discrete Algorithms, pp. 360–369,
January 1997.

Index Number in Suggested List

10 9 8 7 6 5 4 3 2 1
No

Suggestion
Iteration

No.
 10 102 1189 2526 1
 6 4 48 337 2053 1339 2
3 1 7 9 9 8 21 75 474 2387 833 3
1 5 4 8 6 9 28 89 499 2526 652 4
2 6 3 6 5 16 21 87 500 2544 637 5
6 5 2 4 10 20 20 85 520 2601 554 6
2 6 7 4 7 17 29 86 481 2651 537 7
3 5 4 5 9 19 29 96 477 2698 482 8
3 5 5 4 13 19 27 85 383 2819 464 9
6 5 5 7 14 16 34 81 368 2842 449 10
1 8 3 8 14 12 39 75 367 2861 439 11
5 8 2 6 11 19 37 73 368 2865 433 12
3 9 4 6 15 20 39 83 356 2873 419 13
10 6 4 9 10 15 43 77 380 2889 389 14
1 6 4 8 8 21 34 88 357 2915 385 15
1 7 7 11 8 15 35 86 354 2919 384 16
1 6 5 10 7 17 32 91 351 2890 417 17
2 8 5 14 10 11 38 93 344 2886 416 18
1 5 7 10 7 16 32 94 341 2896 418 19
1 2 8 14 5 6 28 79 289 2922 473 20
3 7 3 5 10 11 20 76 294 2915 483 21

Table 3. Train Set Result.

Index Number in Suggested List

10 9 8 7 6 5 4 3 2 1
No

Suggestion
Iteration

No.
 2 58 519 1189 1
 1 3 19 177 899 669 2

1 1 1 1 4 1 36 208 1029 486 3
 1 1 1 2 6 8 35 229 1095 390 4
 1 2 4 4 8 40 223 1109 377 5

1 1 2 3 4 7 33 230 1139 348 6
 2 2 2 5 8 42 220 1148 339 7
 1 1 3 3 3 12 38 212 1181 314 8
 1 1 3 3 2 10 34 164 1244 306 9

1 1 1 2 3 4 13 35 140 1272 296 10
 1 2 6 4 11 35 150 1274 285 11

1 1 1 2 4 5 12 33 159 1277 273 12
 2 3 5 4 14 36 155 1285 264 13

2 1 2 3 6 12 36 155 1292 259 14
 1 1 4 6 13 37 153 1294 259 15
 1 3 4 3 13 37 154 1294 259 16
 1 1 4 5 12 35 153 1291 266 17
 1 1 6 3 14 39 156 1280 268 18
 1 1 4 5 12 35 159 1285 266 19

1 1 5 5 9 34 142 1297 274 20
1 1 2 4 1 8 24 143 1299 285 21

Table 4. Test Set Result.

