
PRE-PRINT ---- CIS IEEE 2006

Adaptive Language Independent Spell Checking
using Intelligent Traverse on a Tree

Behrang QasemiZadeh
Iran University of Science and Technology

Tehran, Iran
QasemiZadeh@digitalclone.net

Ali Ilkhani
Digital Clone Corp.

Tehran, Iran
Ilkhani@digitalclone.net

Amir Ganjeii
Iran University of Science and Technology

Tehran, Iran
Amir@Ganjeii.com

Abstract—This paper introduces an adaptive, language

independent, and 'built-in error pattern free' spell checker.
Proposed system suggests proper form of misspelled words using
nondeterministic traverse of 'Ternary Search Tree' data
structure. In other words the problem of spell checking is
addressed by traverse a tree with variable weighted edges. The
proposed system uses interaction with user to learn error pattern
of media. In this way, system improves its suggestions as time
goes by.

Keywords—Spell Checking, Ternary Search Tree, Learning
and Adaptation , Error Pattern Modeling

I. INTRODUCTION
The problem of detecting error in words and automatically

correcting them is a great research challenge. Spell Checker
systems have a vast application zone, e.g. internet search
improvement [1] [2] [3], correction of errors caused by OCR1
[4] [5], tools for text editors, Pre-processors for natural
language processing, speech recognition, and etc [6].

The word-error can belong to one of the two distinct
categories, namely, non-word error and real-word error [6].
Real-word error occurs when the usage of word, in relation
with other words, sentence structure, or type of the text
(Scientific, Sport, etc.) is not appropriate [6] [7]. Real-word
error detection requires semantic analysis which is not the
purpose of this paper. The focus, here, is mainly on the non-
word error or misspelling. Misspells are detected when the
specific word does not belong to the word domain of a
language [6]. A spell checker system detects misspelled words,
the position of errors, and it suggests the best similar word (s).

In order to detect the errors, it is necessary to model the
related knowledge of words in a language for the system in
either an explicit (Lexicon) [8] [9] [10] [11] [12] [13] [14] or
an implicit (statistical models) way [5]. After error detection, it
is necessary to specify possible types of errors and their

1 Optical Character Recognition

correction methods for the system. This is generally
accomplished by modeling the common error patterns.

Lexical Knowledge representation of a language is one of
the significant issues in each system related to NLP 2 .
Moreover, the lexical knowledge representation determines the
general approach in system design and architecture. Lexicon’s
architecture can individually contain the implicit knowledge of
the language. In general, computerizing the lexicon (dictionary)
consists of parameters such as the size of dictionary [11],
flexibility, the ability to generate all possible combinations
[14], dictionary file structure, dictionary’s segmentation, and
techniques for words access [11].

Lexicons and their representations have been studied in
details [11] [14]. Some researches have focused only on the
lexicons containing roots of words. Morphological analysis has
been utilized for the detection of the rest of words [4] [9] [10]
[12]. In contrast, in some other researches all the words of
language have been stored in the Lexicon and no lexical
analysis is being utilized [8] [11] [14] [15]. The former
approach is more complex, versus the latter, but it has a good
measure of compression for knowledge representation.

Another important issue in designing the lexicon
architecture is the search method of the words in lexicon. The
most common method is using dictionaries with hash-tables
structure [3] [13]. Its difficulties are proper definition of key for
addressing, weak flexibility, and no compression of lexicon. N-
gram is one of the frequently used methods for OCR. The most
important issue of this method is the formation of a suitable
graph of unprocessed text information [5]. The other common
method for Lexicon representation is utilization of a tree based
data structure [2].

Many researches have been done in order to model the error
pattern and specifying its parameters. There are different
categories for error patterns based on the source of errors.
These categories are based on the structure of each language,
pronunciation similarities [13], Typography (dictation

2 Natural Language Processing

similarity) [16], user's habits [12], and etc. Apart from the
mentioned categories, the achieved pattern functions as a guide
to detect error’s place, hence fixing it. The main issue, here, is
the dependency of error pattern to the language in which the
system is running. Error pattern definition, regarding its
dependence on language and media in which it use is time
consuming, and is usually requires language’s experts, even
though, in most cases, these models are very accurate and
efficient. Accuracy of the error pattern model has a straight
effect on system’s efficiency.

Dictation errors usually happen due to the following errors:
(Figure 1) [2] [6]

• Substitution Error: Using a letter instead of the other.

• Deletion Error: Unintended elimination of one or more
letters.

• Insertion Error: Unintended insertion of a letter in a
word.

• Transposition Error: Transposition of two adjacent
letters.

• Split Word Error: Attaching two correct words.

Figure 1. Usual dictation errors.

Thus, each suggestion of system for a misspelled word is
derived from applying one or more of the changes mentioned
above on the input string. According to what was stated, in
order to propose the proper suggestions, the spell checker faces
a vast search space where only one word, among the suggested
ones, should be selected as the correct one. In spell checker
system, one of the important goals is to limit the search space,
with the help of error pattern models, in order to suggest the
best similar words with the optimal search and the least
computational cost [16].

In order to achieve the main goal of spell checker, which is
error detection and correction, it is needed to store a proper
integration between Lexicon and the structure of error pattern
models.

Another important issue in spell checker design is whether
a spell checker system has an interaction with a user or not. In
the latest systems, it is assumed that the spell checker is used in
a user interactive environment [13] [15] [16]. The system
prepares a list of suggested words from where the user can
make the final choice. In some others, according to their
application, for example as a post-processor for an OCR
system or a Speech to Text system, the spell checker proposes
only one suggestion without any interaction with a user [4] [5]
[8].

The remaining parts of this paper include the followings:
Section 2 reviews some related works. The proposed method is
introduced in Section 3. Experimental results are discussed in
section 4. Finally, section 5 concludes the work.

II. RELATED WORKS
Spell checking has a long history in Computer science [17].

The proposed methods consist of Edition Distance (ED) [2]
[13] [16], rule-based techniques, probability techniques [7]
[15], n-grams models [4] [5], expert systems [14], similarity
key methods [13], and hybrid methods [8] [6] [10]. In most of
these methods, the first step is to prepare language-related
lexicons and extracting the error patterns. In the next step, the
error patterns will be modeled in order to detect the position of
the errors and propose the suitable error-removal solution. The
outputs of such systems are usually a list of the most similar
proper words based on error models [6] [10] [15] [16].

The algorithms, based on the least ED, normally define the
ED with a determined function. The System suggests words
with the least ED for the given misspelled word as its
suggestion [6] [16]. In this method, the error pattern is modeled
by parameters of a distance function. The accuracy and speed
of the algorithm depends on the definition of the ED and can be
flexible depending on its definition.

Similarity key methods, such as SoundEX systems and
Metaphone algorithms [13] try to propose a map between
similarity keys and specification of words [10]. In this method,
‘Hashing’ structure is often used to represent Lexical
knowledge. Map function has also the role of addressing [13].
This method uses the parameters of map function to model
error patterns. Because of the hash table structure, the accuracy
and speed of similarity key methods depend on key's definition
(error pattern). This method has suitable accuracy when the
error pattern model is properly defined.

In n-gram based methods, the occurrence probability of
characters stream of a word is calculated. Lexical knowledge in
n-gram methods is represented in an implicit way. It tries to
model the words of language statistically. This method is
usually used as a post-processor to achieve far better results
with OCR applications [4] [5].

In [12], an adaptive architecture is described for a spell
checker. The system adapts itself with user, using different
order of words in the list of suggested words. The error patterns
of language are predefined in different knowledge bases. In
fact, the error patterns model of the system is fixed and it can
not be changed.

III. THE PROPOSED METHOD
Our method suggests an adaptive, language independent

spell checking tool. It is based on 'Ternary Search Tree' (TST)
data structure. The proposed method learns media error pattern
and improves its suggestions as time goes by. Instead of using
expert knowledge for error pattern modeling, this method
learns error pattern by interaction with user.

Figure 2 shows the general scheme of the proposed system.
Spell Checker consists of five parts: Spell Checking Module

(SCM), Lexicon, Cost of Transition (COT), Learning and
Adaptation Module (LAM), and more importantly a user. The
role of SCM is detection of errors and proposing proper
suggestions. The role of LAM is to learn media error pattern by
interaction with user. Error pattern has been implicitly modeled
in COT. Lexicon contains the words of language in a TST data
structure. Furthermore, two threshold limits are used in order to
control and restrict the search space size when suggesting
proper word. 'Global Threshold' limits the number of suggested
words in a single suggestion entry, while 'Local Threshold'
makes a limitation for each alteration in suggested word(s)
components of a single suggested entry.

SCM takes an input stream. If the word does not exist in the
Lexicon, words with minimum path cost in TST based on COT
would be suggested as a proper form of a misspelled word. List
of extracted words with traversed paths in TST will be sorted
by total path cost. It is then stored in the suggestion list and is
sent to the user. Due to user selection, input stream would be
added as a new word to Lexicon or COT would be updated.
Figure 2 explains data flow diagram between these modules.

Figure 2. Modules and relations between them.

The system components are explained below in details.

A. Lexicon
Lexicon represents the lexical knowledge of language. TST

data structure with weighted edges is used to represent lexicon.
TST data structure was introduced in [19]. Here, each node of
TST stores a single character. Each node points to three other
nodes, one to the left, one to the right, and one in the middle of
them. The left pointer points to a letter with a smaller character
code, while the right pointer points to a letter with a greater
character code. The middle pointer points to the next character
in the input stream. The tree traverse in the left or right nodes
does not cause the traverse in the input stream. This data
structure compresses the data with the same prefix. Frequent
prefixes are saved only once.

Modified TST structure in the proposed method includes
the assignment of costs to edges of tree and a flag which
displays the end of word. The costs related to each edge are
categorized and have been saved in an individual data structure
named 'Cost Of Transition', in order to decrease the volume of
data structure and the facility in adaptation process. Addition of
cost to edges of the tree causes the change in traverse algorithm
of the tree. It will change the traverse from a classic procedure
to a non deterministic one.

B. Cost of Transition
As mentioned above, all similar transitions have similar

costs. They are saved in a matrix based data structure. The

edges of tree are categorized due to their starting and ending
characters. Each row shows the starting character and each
column shows the ending character. Values of matrix cells
show the weight of the specified edge, in the other words, cost
of transition between two characters.

Figure 3. Lexicon and representation of weighted edge in COT matrix.

In order to add the deletion and insertion operating ability
and adding learning ability for them, a 'Null' column and row is
added to the COT matrix to save the cost of deletion and
Insertion. As an example, for Persian, COT matrix could be a
40*40. 28 of rows and columns are labeled with English letters
and the rest are labeled with other common symbols that are
used in writings. Figure 3 reveals a part of this matrix. At the
beginning, the entire matrix cells have the value of 100.

C. Spell Checking
As previously mentioned, according to the specified

architecture, the spell checking process has been transformed
into non-deterministic traverse of a tree with weighted edges.
In other words, the problem of spell checking is transformed to
the problem of traversing a weighted tree with minimum total
weight. With the help of tree traverse, Spell Checking module
provides user a list of suggested correct words. The search
process for the tree representation of lexicon, in order to
present the suggestions list, is as following:

• If the character in the current node of the tree is the
same as the character in the input stream, it will be
traversed on the stream and tree. Otherwise, current
character in input stream will be transformed into the
saved character in tree's current nodes, according to the
specified cost in COT. This transformation and its
related cost will be saved. In the case that the current
node of the tree represent the end of a word, the
suggested word will be saved, and by looking up the
tree root, it will be tried to traverse the rest of the
stream, with the condition that the sum of implemented
costs does not cross the 'Local Threshold' and 'Global
Threshold'. If the current node is not at the end of the
word, the traversing of remaining stream will be
processed from the middle pointer.

• If the character in the current node of the tree is
different from the current character in input stream,
and no relocation has taken place, and the relocation of
the input stream current character with the next
character is possible, then this relocation will take
place and the remaining of the tree will be traversed.

• If the character in the current node of the tree is
different from the current character of the input stream,

and it is possible to transform current character of the
input stream into a null character according to the
exploited cost from COT, 'Local Threshold', and
'Global Threshold', then the current character will be
deleted and the tree traverse from the current node will
be continued, according to the input stream's next
character.

• If the character in the current node of the tree differs
from the input stream's current character, and it is
possible to transform the invalid character in the input
stream into character of current node according to the
exploited cost from COT matrix, 'Local Threshold',
and 'Global threshold', then the character of current
node will be inserted and the tree traverse will be
continued according to the current character of the
input stream and from the middle node.

 The mentioned traverse will be also examined for the left
and right nodes. This operation will be continued until reaching
the end of the input stream or an invalid node.

D. Learning and Adaptation
The role of LAM is to modify the cost of transition of tree.

In other words, the role of LAM is to learn media error pattern
(such as user’s habit for dynamic media or OCR problems for
static media and so on) and to add new words to Lexicon. If
input string does not exist in Lexicon, it would be detected as a
misspelled word and could be added to Lexicon by standard
insert function of TST data structure. If user selects one of
suggested words of system, this choice causes the change in
cost values and weights of tree edges in order to decrease the
cost of selected suggestion and increase the cost of other
suggestions for same misspell word. Cost values in COT will
be calculated by the (1), if the user's selection is not the first
suggestion in the list.

() ()

()





≠





 +∗

=∗−∗
=

selectedindex
index

CCCOT

selectedindexindexCCCOT
CCCOT

oldji

oldji

ji α
α

1,

1,
),(

(1)

Where α is the learning rate, and index is the number of
suggestions in suggested list.

E. Thresholds
To limit the search space when traversing the tree, two

thresholds namely Local and Global Thresholds are used. Local
Threshold limits search depth and Global Threshold prevent
from generating unsuitable consequence of words.

Local threshold definition is based on the length of each
suggested word. Global threshold definition is based on the
length of input string and the number of words in each
suggestion entry. If the length of suggested words is shown by
Ls, the length of input string is shown by Li, and Ni shows the
number of words in a suggestion entry then a simple formula
for Local and Global thresholds can be defined as (2), and (3).

() ()

()
()1exp

ln
2ln2 −−∗















 <

∗= sN

s

s
s otherwiseL

L
LholdLocalThers λ

(2)

 () ()()sis MinLholdLocalThersMinimumLsholdGlobalTher *,γ= (3)

Where λ is the maximum allowed dissimilarity rate to
control the depth of search and γ is a limitation rate for the
number of suggested word.

IV. EXPERIMENTAL RESULT
The proposed system has been tested for two languages,

Persian and English. In Persian, since there was no data-set to
test the system, we gathered a list of misspelled words. The list
contains 5595 misspelled words and their correct forms. In
English, we have used common misspelled words which have
been used to test other spell checker systems before3. English,
data-set contains 547 words. For both English and Persian, test-
bench has been randomly divided into two parts: one for
training and the other for system testing.

For Persian, 3827 words were spotted as training set and
1768 were selected for testing. In this case lexicon contained
40000 Persian words. As English, 360 words were spotted as
training set and 187 were selected for testing. In this case
lexicon contained 25000 English words

The precision of system was calculated based on (4). The
presented formula for precision is different from its classic
form due to the importance of the index of words in the list of
suggestions.

 

 ≤≤−

=

= ∑

Otherwise
SuggestNoSuggestNo

Index

N
Index

ecision

ii ww
i

N

i

i

0
10111

*10
Pr

(4)

Hear 'N' stands for the total number of words in test/train
set, 'wi' indicates the ith word in the suggestion list and
'SuggestNowi' is the selected word's index in the suggestion list
for the word number 'i' in the test/train set.

For both of these languages, at first, COT matrix cells are
initiated by 100. The learning rate, α, is set to 0.01. Also λ,
Maximum allowed dissimilarity rate, and γ, limitation rate for
the number of suggested word, are set to 35 and 1.50.

For each data-set, three figures represent the results. Figure
4 and 7 show how many words are suggested correctly as the
first word in the suggestion list. Figure 5 and 8 show the
precision of system in each iteration based on (4). The number
of misspelled words which have no suggestion is shown in
figure 6 and 9. They can be interpreted as a measure of system
coverage.

3 http://www.aspell.net/test/

Auto Select

0
10
20
30
40
50
60
70
80
90

1 3 5 7 9 11 13 15 17 19 21

Iteration

Train
Test

Figure 4. Auto-Select Precision (Percentage/Iteration) for Persian data-set.

As figure 4 and 5 show, since the sources of errors are
various, the change in learning level is not noticeable after
certain learning iterations. In other words, even though learning
of error pattern, itself, results in emergence of other errors in
the whole data-set, it can cause improvement in some other
errors e.g. precision. Similar problem happens for English data-
set as shown in figure 7 and 8.

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21

Iteration

Pr
ec

is
io

n

Train
Test

Figure 5. System Precision (Percentage/Iteration) for Persian data-set.

Not Suggested

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21

Iteration

Pr
ec

en
ta

ge

Train Set

Test Set

Figure 6. No Suggestion (Percentage/Iteration) for Persian data-set.

Figure 6 and 9 show the number of words which system
failed to generate any suggestion for them. As previously

mentioned, after certain iterations, 'error pattern learning' for
some of words results in system's inability to suggest correct
form of some other words which system was previously able to
provide a suggestion list for them.

Auto Select

0
10
20
30
40
50
60
70
80
90

1 3 5 7 9 11 13 15 17 19

Iteration

Pe
rc

en
ta

ge
e

Train
Test

Figure 7. Auto-Select Precision (Percentage/Iteration) for English data-set.

0
10
20
30
40
50
60
70
80
90

1 3 5 7 9 11 13 15 17 19

Iteration

 P
re

ci
si

on
Train
Test

Figure 8. System Precision (Percentage/Iteration) for English data-set.

Not Suggested

0
5

10
15
20
25
30
35
40

1 3 5 7 9 11 13 15 17 19

Iteration

Pe
rc

en
ta

ge

Train

Test

Figure 9. No Suggestion (Percentage/Iteration) for English data-set.

V. CONCLUSION
This paper introduced a novel 'language independent' spell

checker system which can learn the media error pattern with
some sample from a language or a media in which the system
is used. The proposed method can adapt itself by interactions
with user or outer media. it improves its suggestion list as time

progresses. In other words, the system can learn the error
pattern of user and media.

One of the most important issues in designing a spell
checker system is the popper definition of media error pattern.
It is due to the fact that, it has a great influence on the results of
spell checker system. Generally, error patterns are fixed and
language experts define these patterns. This resulted in a
language dependent system which can not be used for other
languages. Such a system could not be used to detect
misspelled words in other media except for the media that has a
previous defined error pattern. The error pattern learning ability
of the proposed method can overcome this shortcoming.

In the proposed system, adding a new language is equal to
adding a lexicon and a COT matrix; therefore, the localization
of the proposed system is easy. The system will extract the
common error patterns without the help of experts; In other
words it learns new media/language error pattern by some
samples. Briefly, the introduced approach has more flexibility,
more data compression rate, and more accuracy in comparison
with other proposed methods. However our method is sensitive
to media, but it is shown that it has acceptable results for auto-
selection problems. For future work, we have decided to use
language models to improve the accuracy of system.

REFERENCES
[1] H. Dalianis, 'Evaluating a spelling support in a search engine', In

Proceedings of NLDB-2002, the 7th International Workshop on the
Applications of Natural Language to Information Systems, June, 2002.

[2] Bruno Martins, Mário J. Silva, 'Spelling correction for search engine
queries', EsTAL, pp. 372-383, 2004.

[3] Mansour Sarr, 'Improving precision and recall using a spellchecker in a
search engine', Master’s Thesis in Computer Science, Stockholm
University, 2004.

[4] Sait Ulaş Korkmaz, G. Kırçiçeği Y. Akıncı, Volkan Atalay, 'A Character
recognizer for turkish language', Proceedings of the Seventh
International Conference on Document Analysis and Recognition
(ICDAR), IEEE, 2003.

[5] Li Zhuang, TaBao, Xiaoyan Zhu, Chunheng Wang, Satoshi Naoi, 'A
Chinese OCR spelling check approach based on statistical language
models', International Conference on Systems, Man and Cybernetics,
Hague, Netherlands, pp. 4727-4732, IEEE, Oct. 2004.

[6] Bidyut Baran Chaudhuri, 'Reversed word dictionary and phonetically
similar word grouping based spell-checker to bangla text', Indian
statistical Institute, Kolkata, India, 2000.

[7] Filip Ginter, Jorma Boberg, Jouni J¨arvinen, Tapio Salakoski, 'New
techniques for disambiguation in natural language and their application
to biological text', Journal of Machine Learning Research 5, pp. 605-
621, 2004.

[8] Dustin Boswell, 'Language models for spelling correction', CSE 256,
Spring 2004.

[9] Johan Carlberger Rickard, Domeij Viggo Kann Ola Knutsson, 'A
Swedish grammar checker', Association for Computational Linguistics,
2000.

[10] T Dhanabalan, Ranjani Parthasarathi and T.V. Geetha, 'Tamil spell
checker', Sixth Tamil Internet 2003 Conference, Chennai, Tamilnadu,
India, August 22-24 2003.

[11] Boubaker Meddeb Hamrouni, 'Logic compression of dictionaries for
multilingual spelling checkers', Proceedings of the 15th conference on
Computational linguistics, Kyoto, Japan, August 05-09 1994.

[12] Menno van Zaanen, Gerhard van Huyssteen, 'Improving a spelling
checker for Afrikaans', Language and Computers, Publisher Rodopi,
ISSN 0921-5034, vol. 47, no. 1, pp. 143-156, August 2003.

[13] Arif Billah Al-Mahmud Abdullah, Ashfaq Rahman, , 'A Generic spell
checker engine for south asian languages', accepted for publication and
presentation at the IASTED 2003 refereed conference on 'Software
Engineering and Applications' ~SEA 2003, Marina del Rey, CA, USA'.
Paper No 397-045, November 3-5 2003.

[14] Sandor Dembitz, Petar Knezevic, Mladen Sokele, 'Developing a spell
checker as an expert system', Journal of Computing and Information
Technology - CIT 11, pp. 285–291, 2004.

[15] Deepak Seth, Mieczyslaw M. Kokar, 'SSCS: a smart spell checker
system implementation using adaptive software architecture', IWSAS,
pp. 187-197, 2001.

[16] Per-Ola Kristensson, Shumin Zhai, 'Relaxing stylus typing precision by
geometric pattern matching', ACM Conference on Intelligent User
Interfaces (Proc. IUI 2005), ACM Press, pp. 151-158, 2005.

[17] K. Kukich, 'Techniques for automatically correcting words in text',
ACM Computing Surveys, 24(4):377.440, 1992.

[18] Gerasimos Potamianos, Frederick Jelinek, 'A Study of n-gram and
decision tree letter language modeling methods', Speech Communication
24, pp. 171-192, 1998.

[19] Jon L. Bentley and Robert Sedgewick, 'Fast algorithms for sorting and
searching strings', Proceedings of the eighth Annual ACM–SIAM
Symposium on Discrete Algorithms, pp. 360–369, January 1997.

[20] Loghman Barari and Behrang Qasemizadeh, CloniZER Spell Checker:
Adaptive language independent spell checker, ICGST, 2005, Cairo.

	I. Introduction
	II. Related Works
	III. The Proposed Method
	A. Lexicon
	B. Cost of Transition
	C. Spell Checking
	D. Learning and Adaptation
	E. Thresholds

	IV. Experimental Result
	V. Conclusion
	References

