tech,12-2-H92-1036,bq forward-backward algorithm </term> and the <term> segmental k-means algorithm </term> , are expanded and <term> reestimation
tech,2-2-H92-1036,bq models ( CDHMM ) </term> . The classical <term> MLE reestimation algorithms </term> , namely the <term> forward-backward
tech,22-3-H92-1036,bq recognition </term> applications , namely <term> parameter smoothing </term> , <term> speaker adaptation </term> ,
tech,25-3-H92-1036,bq namely <term> parameter smoothing </term> , <term> speaker adaptation </term> , <term> speaker group modeling </term>
tech,15-4-H92-1036,bq provided to show the effectiveness of the <term> MAP estimation approach </term> . It is well-known that there are
tech,32-3-H92-1036,bq <term> speaker group modeling </term> and <term> corrective training </term> . New experimental results on all
model,7-1-H92-1036,bq maximum a posteriori estimation </term> of <term> continuous density hidden Markov models ( CDHMM ) </term> . The classical <term> MLE reestimation
tech,28-3-H92-1036,bq </term> , <term> speaker adaptation </term> , <term> speaker group modeling </term> and <term> corrective training </term>
tech,8-2-H92-1036,bq reestimation algorithms </term> , namely the <term> forward-backward algorithm </term> and the <term> segmental k-means algorithm
tech,17-3-H92-1036,bq unified approach for the following four <term> speech recognition </term> applications , namely <term> parameter
other,19-2-H92-1036,bq algorithm </term> , are expanded and <term> reestimation formulas </term> are given for <term> HMM with Gaussian
tech,2-1-H92-1036,bq % reduction in error . We discuss <term> maximum a posteriori estimation </term> of <term> continuous density hidden
tech,6-3-H92-1036,bq . Because of its adaptive nature , <term> Bayesian learning </term> serves as a unified approach for
hide detail