P98-1093 |
to become a branch function for
|
episodic retrieval
|
. It is possible to arrange each
|
P98-1093 |
are used as retrieval keys for
|
episodic retrieval
|
, and as axes for multi-dimensional
|
P98-1093 |
The model has three functions :
|
episodic retrieval
|
, multi-dimensional clas - sification
|
P98-1093 |
, this idea is similar to our
|
episodic retrieval
|
though the purpose and target
|
P98-1093 |
Retrieval The 5W1H index can easily do
|
episodic retrieval
|
by choosing a set of related
|
P98-1093 |
predicate " element tg ( produce ) are
|
episodic retrieval
|
keys . The extracted results
|
P98-1093 |
platform with three functions :
|
episodic retrieval
|
, multidimensional classification
|
P98-1093 |
platform with three func - tions :
|
episodic retrieval
|
, multi-dimensional classi -
|
P98-1093 |
classification ( Figure 1 ) . 3.1
|
Episodic Retrieval
|
The 5W1H index can easily do
|
P98-1093 |
data and academic papers . 2 )
|
Episodic retrieval
|
: The interface should be improved
|
P98-1093 |
order to compare retrieval data .
|
Episodic retrieval
|
is based on the temporal sorting
|
P98-1093 |
precision is 82.4 % . an example of
|
episodic retrieval
|
based on headline news saying
|
P98-1093 |
semiconductors ) " on the headline for
|
episodic retrieval
|
. A " who " element NEC , a "
|